
www.manaraa.com

Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2011

Adaptive rule-based malware detection employing learning Adaptive rule-based malware detection employing learning

classifier systems classifier systems

Jonathan Joseph Blount

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Blount, Jonathan Joseph, "Adaptive rule-based malware detection employing learning classifier systems"
(2011). Masters Theses. 5008.
https://scholarsmine.mst.edu/masters_theses/5008

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5008&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5008?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5008&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

www.manaraa.com

ADAPTIVE RULE-BASED MALWARE DETECTION EMPLOYING

LEARNING CLASSIFIER SYSTEMS

by

JONATHAN JOSEPH BLOUNT

A THESIS

Presented to the Faculty of the Graduate School of

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2011

Approved by

Daniel R. Tauritz, Advisor
Bruce M. McMillin
Samuel A. Mulder

www.manaraa.com

Copyright c© 2011

Jonathan Joseph Blount

All Rights Reserved

www.manaraa.com

iii

ABSTRACT

Efficient and accurate malware detection is increasingly becoming a necessity for

society to operate. Existing malware detection systems have excellent performance in

identifying known malware for which signatures are available, but poor performance

in anomaly detection for zero day exploits for which signatures have not yet been

made available or targeted attacks against a specific entity. The primary goal of this

thesis is to provide evidence for the potential of learning classifier systems to improve

the accuracy of malware detection.

A customized system based on a state-of-the-art learning classifier system is

presented for adaptive rule-based malware detection, which combines a rule-based

expert system with evolutionary algorithm based reinforcement learning, thus cre-

ating a self-training adaptive malware detection system which dynamically evolves

detection rules.

This system is analyzed on a benchmark of malicious and non-malicious files.

Experimental results show that the system can outperform C4.5, a well-known non-

adaptive machine learning algorithm, under certain conditions. The results demon-

strate the system’s ability to learn effective rules from repeated presentations of a

tagged training set and show the degree of generalization achieved on an independent

test set.

This thesis is an extension and expansion of the work published in the Security,

Trust, and Privacy for Software Applications workshop in COMPSAC 2011 - the 35th

Annual IEEE Signature Conference on Computer Software and Applications [1].

www.manaraa.com

iv

ACKNOWLEDGMENT

I would like to express my gratitude to the late Dr. Ann Miller for providing

support during her time as my advisor. She always encouraged me to pursue what I

found interesting. Her advice helped guide me towards the field of computer security

and her dedication to learning will be remembered.

I thank my advisor Dr. Daniel Tauritz for his help, suggestions, technical guid-

ance, and keeping me motivated throughout my career as a graduate student. His

dedication to his students helped me stay focused and enabled me to complete this

thesis. As an undergraduate, his courses were stimulating and became foundations

for my graduate work. His role as my advisor was paramount in helping me secure

research and career opportunities.

I would like to thank Dr. Samuel Mulder of Sandia National Laboratories for

his support and feedback throughout this thesis. His expertise and advice helped

guide me and his insights kept me headed in the right direction.

Dr. Bruce McMillin deserves my thanks as well. I had the privilege of taking

his courses as an undergraduate as well as a graduate student and appreciate the

knowledge I have gained from him.

I would also like to thank Danny Quist of Offensive Computing for providing

the malware samples used in this research.

Additionally, I would like to thank everyone at Sandia National Laboratories

who have supported my education and helped fund it. Sandia National Laborato-

ries is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Depart-

ment of Energy’s National Nuclear Security Administration under contract DE-AC04-

94AL85000.

Finally, I would like to thank my friends and family for their support throughout

my education.

www.manaraa.com

v

TABLE OF CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGMENT .. iv

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . ix

SECTION

1. INTRODUCTION .. 1

2. MALICIOUS SOFTWARE .. 3

2.1. COMMON TYPES OF MALWARE .. 3

2.2. MALWARE DETECTION .. 5

2.2.1. Anomaly-based detection . 6

2.2.2. Specification-based detection . 7

2.2.3. Signature-based detection . 7

3. RELATED WORK .. 9

4. BENCHMARK DESIGN .. 12

4.1. DATASET .. 12

4.2. PRE-PROCESSING .. 13

4.2.1. VirusTotal . 13

4.2.2. Feature Extraction . 14

4.2.3. Executable Packing . 16

4.2.4. Entropy . 17

4.3. FILTERING THE DATASET .. 21

4.4. C4.5 DECISION TREE ALGORITHM.. 22

4.5. C4.5 BENCHMARKING RESULTS . 22

5. EVOLUTIONARY COMPUTING .. 26

5.1. EVOLUTIONARY ALGORITHM COMPONENTS . 27

5.1.1. Representation . 27

5.1.2. Fitness function . 27

5.1.3. Population . 28

5.1.4. Parent selection . 28

5.1.5. Recombination . 28

www.manaraa.com

vi

5.1.6. Mutation . 28

5.1.7. Survivor selection . 28

5.1.8. Initialization . 28

5.1.9. Termination . 28

5.2. GENETIC PROGRAMMING .. 28

5.2.1. Representation . 29

5.2.2. Initialization . 29

5.2.3. Recombination . 29

5.2.4. Mutation . 30

6. LEARNING CLASSIFIER SYSTEMS . 31

6.1. DISCOVERY .. 32

6.2. LEARNING.. 32

6.3. MICHIGAN AND PITTSBURGH STYLE LCS . 33

6.4. OVERGENERAL CLASSIFIER PROBLEM .. 33

6.5. STRENGTH-BASED AND ACCURACY-BASED FITNESS 34

6.6. ZCS. 34

7. EXTENDED CLASSIFIER SYSTEM (XCS) . 37

7.1. INITIALIZATION.. 39

7.2. EVALUATION .. 39

7.3. EVOLUTION .. 41

8. SYSTEM DESIGN .. 42

8.1. LEARNING CLASSIFIER SYSTEM .. 42

8.1.1. Rule Representation . 42

8.1.2. Initialization . 42

8.1.3. Action Selection . 44

8.1.4. Rule Evaluation . 44

8.1.5. Mutation . 45

8.1.6. Crossover . 45

8.1.7. Evolutionary Algorithm . 45

8.2. DECISION TREE INITIALIZATION .. 46

8.2.1. C4.5 rule initialization . 46

8.2.2. Specialization function . 47

8.3. PERFORMANCE METRICS . 47

8.4. DEFAULT PARAMETERS . 48

9. EXPERIMENTAL RESULTS . 51

9.1. FAMILY OF MALWARE STUDY .. 51

www.manaraa.com

vii

9.2. BENCHMARK DATASET COMPARISON.. 56

9.2.1. Initialization method study . 56

9.2.2. Population size study . 58

9.2.3. Offspring size study . 58

9.3. SYSTEM COMPARISON TO C4.5 DECISION TREE 59

10. CONCLUSION.. 65

11. FUTURE WORK .. 66

BIBLIOGRAPHY .. 68

VITA . 72

www.manaraa.com

viii

LIST OF ILLUSTRATIONS

Figure Page

4.1 Pre-processing stage. 13

4.2 Sample output from VirusTotal . 14

4.3 Number of imports per file . 15

4.4 Most common imports . 16

4.5 Number of PE sections. 19

4.6 Number of high-entropy PE sections. 20

4.7 Portion of a decision tree created using C4.5. 23

4.8 C4.5 Results . 24

5.1 Evolution Cycle . 27

5.2 Genetic programming tree representation . 29

6.1 ZCS overview . 36

7.1 XCS overview . 38

7.2 XCS rule representation . 38

8.1 Malware LCS Diagram. 43

8.2 Visualization of a subtree of a generated rule . 43

9.1 Malware family results using population size=10 . 52

9.2 Malware family results using population size=20 . 53

9.3 Malware family results using population size=30 . 54

9.4 Population size training results. 59

9.5 Population size testing results . 60

9.6 Visualization of an unbalanced C4.5 decision tree . 62

9.7 C4.5 and LCS comparison . 63

9.8 LCS evolution compared to C4.5 . 64

www.manaraa.com

ix

LIST OF TABLES

Table Page

4.1 PE file errors preventing feature extraction . 20

8.1 Classifier system parameters. 49

9.1 Family of malware study experimental results . 56

9.2 Initialization study experimental results . 57

9.3 Offspring size study experimental results . 61

www.manaraa.com

1. INTRODUCTION

Malicious software (malware) is a program that causes undesired behavior or

damage to a computer system, network, or service. Undesired behavior of software

includes disruption or denial of service, loss of privacy, unauthorized access to re-

sources, and any other hostile or intrusive behavior. Malicious software runs without

the consent of users and often without their knowledge. Malware is an ever-growing

threat to computer systems, and security researchers are in a virtual arms race with

malware authors. The number of different strains and types of malicious software

has been on the rise for years. A recent report states that “in 2010, cyber-criminals

created and distributed a third of all existing viruses”, 34% of all malware that has

ever existed until 2010 was created in those 12 months [2].

Trends in computer usage have led malware authors to create malicious software

on any platform that is profitable. Cybercrime is a multi-million dollar business [3],

and will continue to get larger as more computing devices become available and are

able to get online. As with any other business, internet crime is driven by a return

on investment, and new computing areas will offer criminals new venues of profit.

Once a computer platform has enough users to be worth targeting, criminals will

start attacking that system. Mobile threats are a new category for malware, and as

the smartphone user base grows, so will the malware author base targeting mobile

platforms. In 2010, 163 mobile vulnerabilities were reported [4] and some of the first

trojans and mobile botnets started infecting phones. Attackers are actively seeking

out new areas that can be exploited for profit.

This thesis applies learning classifier systems (LCSs) to malicious software de-

tection. A learning classifier system is a rule-based system that utilizes reinforce-

ment learning combined with evolutionary computing to model an intelligent decision

maker in an arbitrary environment. LCSs are based on Darwinian theories and their

biological-inspired techniques are what makes them adaptable to many environments

and problems.

This thesis presents a blueprint for a benchmarking system for malware de-

tection, using a dataset of malicious and non-malicious files. It describes a feature

www.manaraa.com

2

extraction stage of malicious executables as well as introduces a method for training

and testing adaptive learning classifier systems on a dataset representative of a real

computer system. This thesis also contributes a baseline performance analysis of the

C4.5 machine learning algorithm on the dataset for comparison with other techniques.

Most importantly, this work introduces a hybridization of XCS and S-classifiers for

malware detection, adapting it for maximal accuracy and generalization as shown on

the benchmarking dataset.

www.manaraa.com

3

2. MALICIOUS SOFTWARE

The classification of malware is a difficult problem. Software that allows unau-

thorized control of a system is obviously malicious, but software that displays ads

(adware) is not strictly harmful, unless it invades privacy and collects personal in-

formation without user consent (spyware). Software can be considered malicious

depending on the intent of its author, and this makes it difficult to classify a piece of

code as malicious or not. Research has automated malware detection based on the

intent of the user and the intent of the malware author [5].

Malware comes in various forms and categories, and are classified according to

the methods and techniques employed by the software. While there is overlap between

categories and most malware falls into multiple categories, making a clear distinction

between the different types of malware is useful so the reader has background knowl-

edge on the different kinds of threats detection software must identify.

2.1. COMMON TYPES OF MALWARE

The following list presents common types of malware paraphrasing existing lit-

erature [6, 4, 7, 8].

• Virus - Computer viruses propagate from one file to another and/or from one

computer to another by inserting their code into other programs. Viruses need

an existing host program to execute and cause harm.

• Worm - A worm is a type of virus that spreads to many computer by copying

itself to another computer on the network. Worms typically infect as many

connected systems as possible and unlike viruses, do not need a host in order

to cause damage.

• Trojan horse - Trojans mask themselves by appearing to be something legiti-

mate. Trojans typically destroy data or attempt to extract confidential infor-

mation including financial data and passwords.

www.manaraa.com

4

• Spyware - Spyware tracks users’ surfing habits and online information in order

to display targeted ads. Spyware tries to ensure it remains on a system and is

considered an invasion of privacy.

• Rootkits - Rootkits hide traces of themselves from the computer and the user

to evade detection in order to run longer and increase the damage dealt to a

system.

• Scareware - Rogue security software that pretends to be legitimate and cre-

ates false alerts that prompt users to download or purchase malicious software,

sometimes installing the malware it claims to protect against

• Backdoor - A backdoor bypasses normal authentication and security mecha-

nisms to allow access and control of a system.

• Keylogger - A program that stores strokes typed on a keyboard, allowing at-

tackers access to confidential data including passwords and financial data.

In the last few years, malware authors have developed advanced techniques of

spreading their malicious creations. The following list of newer techniques is para-

phrased from existing literature [4, 6, 8].

• Phishing - Sending email that falsely claims to be from a legitimate source in

order to steal personal information.

• Spear Phishing - A type of phishing that targets a group of people that have

something in common, e.g., working at a company or going to the same school,

and utilizes inside information to appear legitimate and from a trusted source

• Targeted attacks - These high profile attacks are typically directed at enterprises

and governmental organizations and are a form of spear phishing that target

specific individuals or groups with privileged access

• Attack kits - These software toolkits are sold by malware creators to common

cyber criminals for widespread use. As opposed to targeted attacks, these pack-

ages infect a website and use multiple attack vectors that work cross-browser

on multiple platforms to exploit as many visitors as possible.

www.manaraa.com

5

2.2. MALWARE DETECTION

Malware detection is the primary step in preventing a computer system from

potential information loss and system compromise. There are a variety of ways to

detect malicious software. A malware detector attempts to detect malicious behavior

or programs. Detection is the most important step in preventing a computer system

from being infected, protecting it from potential information loss and system com-

promise. There are many methods of detecting malicious software to prevent it from

executing. This section details some of the common techniques and approaches and

their advantages and disadvantages.

The main detection techniques are anomaly-based, signature-based, and specifi-

cation based detection. These techniques are not limited to malware detection, many

of these are applicable to network intrusion detection, fraud detection, and other

fields.

A majority of anti-virus software use signature-based techniques that utilize

a continuously updated set of signatures [9]. This is a reactive technique: until a

signature is created for an exploit, the exploit will elude detection by traditional

anti-virus software.

Anomaly-based techniques detect patterns in data that differ from expected

behavior. Anomalies in data can correspond to important changes in a system. A

computer with an anomalous internet traffic pattern could indicate it has been at-

tacked and is disclosing information [10].

The approach of a malware detection system determines how the information

about a program is gathered and the detection technique determines how that in-

formation is used. The main approaches to malware detection are static analysis,

dynamic analysis, and a hybrid of the two.

Static analysis uses structural and syntactical information of a program to de-

termine its maliciousness. Before a program is executed, static information found in

the executable, including header data and the sequences of bytes, is used to determine

whether it is malicious. Static analysis is able to analyze all possible paths a program

may take at run time, but usually not every possible state of the program as there are

an arbitrary number of user inputs and states [11]. Static analysis uses an abstracted

model of program that approximates the actual behavior [11]. Static analysis can be

time consuming, especially with obfuscated code.

www.manaraa.com

6

Dynamic analysis uses run-time information including contents of the run-time

stack to detect malware during or after its execution [8]. Dynamic analysis does not

use abstraction, it analyses actual run-time behavior of a program. Dynamic analysis

analyses a single execution path of an executable and multiple runs using different

sets of inputs will cover additional code paths. There is no guarantee, however, that

all possible behaviors of an executable are covered by a set of inputs. The main

challenge of static analysis is creating a good abstraction of the program and the

primary challenge of dynamic analysis is creating a representative set of inputs to the

program [11].

2.2.1. Anomaly-based detection. Anomaly-based detection techniques

compare a program’s behavior to what is considered normal behavior in order to

evaluate whether or not a program is malicious. This technique has two phases, a

learning, or training, phase and a detection, or monitoring, phase. During the learning

phase, a profile of normal and acceptable behavior is learned by the detection system.

During the detection phase, this learned profile is applied to actual activity in order

to detect deviations (anomalies).

A major advantage of an anomaly-based technique is the ability to detect zero-

day attacks which the system has never seen before. The disadvantages of anomaly-

based detection techniques are a high false alarm rate and the difficulty of determining

what type of features the system should learn during the training phase [8]. A pri-

mary challenge in detecting anomalies is defining acceptable behavior, which includes

every possible normal behavior, and creates a precise boundary between normal and

anomalous activity. Behavior that lies close to this boundary has a higher chance of

being incorrectly classified.

Dynamic anomaly-based detection uses information gathered during a program’s

execution. The detection phase identifies malicious behavior by comparing it with

learned behavior. Dynamic techniques execute malicious programs on the system.

Static anomaly-based detection looks at the file structure of the program and

uses its characteristics to determine if it contains malicious code. An advantage of

static anomaly-based detection is that malware can be detected without having to

execute it [8].

Rule-based anomaly detection techniques learn rules during the training phase

that capture the normal behavior of a system. Any behavior that is not covered by

www.manaraa.com

7

the rules is considered to be an anomaly. Association rule mining-based techniques

have been used for network intrusion detection, system call intrusion detection, and

credit card fraud detection [10].

In an ideal situation, the set of anomalous activities would be the same set

as malicious activities. If this were the case, computer security would be an easy

problem to solve; however, in reality systems encounter false negatives, behavior that

is not anomalous but is malicious, and false positives, behavior that is anomalous

but not malicious. While training anomaly thresholds can be set low to minimize

false negatives, this will increase the amount of false positives. The training profile is

only an approximation of all valid behaviors and valid behaviors not seen during the

training would cause false negatives [8].

2.2.2. Specification-based detection. Specification-based techniques

are similar to anomaly-based techniques, but differ in the source of the acceptable

behavior. While anomaly-based systems typically develop normal profiles of systems

using automatic training, in specification-based detection, security specifications are

manually created for correct behavior of critical objects. Programs that violate these

specifications are anomalous, and unknown attacks can be detected.

Specification detection differs from anomaly detection by approximating the re-

quirements of a system instead of approximating an implementation of one. Training

a system specifies all valid behaviors of that system. A main challenge of specification-

based techniques is completely and accurately specifying the entire set of acceptable

behaviors, as any inaccuracies result in incorrect detection.

An example hybrid specification approach combines static with dynamic analysis

to analyze system calls [12]. During static analysis, information is saved about every

system call which includes its 1) call address, 2) name, and 3) return address. During

dynamic analysis, executables are monitored during run-time to ensure each system

call matches the list from static analysis. If a process was modified during run-time,

e.g., it was injected by a malicious process, then the three pieces of information will

have changed and the behavior will be detected.

2.2.3. Signature-based detection. In signature-based detection schemes,

the system attempts to model the malicious behavior of programs and compares each

program to the signatures. The collection of signatures represents all the knowledge

www.manaraa.com

8

the system has about how malicious programs behave and this collection is used to

make a decision on the maliciousness of a program. For a program to be detected

as malicious it must match a signature known by the detection system. Signatures

must be updated when a new piece of malware is found; the system has to be con-

stantly checked to ensure it is up-to-date. This creates a problem when a zero-day

attack emerges, as it takes time to create and push out a signature and the system is

vulnerable during this time. The quicker signatures can be created, the better they

can protect against malware that spreads quickly throughout the internet. There has

been some research into automated signature builders, but they are not as advanced

as humans [8].

The primary drawback of signature-based detection is the set of possible ma-

licious behaviors is infinitely large, and there are no known techniques that can ac-

curately represent the entire set. As new malicious behaviors are found, signatures

have to be created in order to stay up-to-date. New malware is often derived from

existing malware, and signatures can take advantage of this fact if they are created in

such a way that captures the malicious essence of the malware; benefits of this would

include that a smaller number of signatures would be as effective, and the ability to

detect obfuscated versions of the same malware.

www.manaraa.com

9

3. RELATED WORK

Recent research has shown that existing anti-virus software is poor at identify-

ing polymorphic scripts [13]. By using various polymorphic techniques, the authors

were able to create malicious scripts with identical functionality to known malware

that were undetectable by existing anti-virus software. They were able to detect the

malware variants by analyzing the software’s dependency graph with a hybrid ge-

netic algorithm. Simple polymorphism could fool more than half of the software that

detected the original malware.

There have been approaches to malware detection that use non-signature based

techniques. By extracting features of portable executable (PE) files, malicious exe-

cutables can be detected by heuristic techniques [9]. Packed and non-packed files were

processed separately by a decision tree to determine whether they are maliciousness.

To determine whether a binary is packed, three features were looked at: (1) the name,

number and type of sections, (2) the number of entries in the import address table,

and (3) the entropies of various portions of an executable. Different structural models

were developed for packed and non-packed executables. This technique was shown to

overcome a bias shown by structural features for packed/non-packed executables by

using two models: the non-packed model uses a subset of features for non-packed files

which contain the most information, and the packed model uses a subset of features

which are least perturbed by packing.

A comparative study analyzed evolutionary and non-evolutionary rule learning

algorithms to evaluate performance differences [14]. Five types of LCS were com-

pared with five non-evolutionary rule learners. Four performance metrics were used

to compare the algorithms: (1) classification accuracy, (2) the number of rules, (3)

comprehensibility of the rules, and (4) processing overhead. All algorithm implemen-

tations were provided by a unified framework called Knowledge Extraction based on

Evolutionary Learning (KEEL). The rules were built from 189 features extracted from

the files, but examples of features were not provided and an unknown number of fea-

tures were determined to be redundant. Each algorithm was run on a subset of 10,339

malicious executables. The total malicious set of executables was divided into cate-

www.manaraa.com

10

gories such as backdoor, virus, or trojan. The size of each subset ranged from a few

hundred files to 2500, with the average below 1500 executables. The ratio of training

set size to test set size was 9:1, so each category has a test set of only a few hundred

files. The reported classification accuracy for all algorithms was above 95 percent.

Their conclusions indicated that the non-evolutionary rule learning algorithms out-

performed the LCS types. The LCS types still had very high detection rates, but at

the expense of high processing time. The authors acknowledged that they did not

explore different configuration parameters for the rule learning algorithms, as well as

a plan to combine the datasets into a single large set in order to create a more chal-

lenging environment. Limiting the sets to a specific category of malware increases the

chances of similarity between files, providing for an easier environment than a random

collection of malware; this narrow result led to artificially high accuracy rates which

are most likely not representative of real world performance.

A fuzzy learning classifier system was applied to intrusion detection in [15]. The

system automatically generated a detection model that could detect known attacks

and variations on known attacks by using a fuzzy learning classifier system. Results

were presented on a benchmark dataset and compared with the C4.5 classification

algorithm. The system evolved fuzzy classification rules for effective intrusion de-

tection by optimizing membership functions using an evolutionary algorithm. The

fuzzy rules were constructed based on the C4.5 rules and compared to the standard

C4.5 approach. Each individual in the population consisted of membership functions

related to input variables from a dataset of intrusions. Four different input variables

were used in the individual representation: duration, source bytes, destination bytes

and a measurement of the number of “hot” indicators. These input variables contain

a total of 66 real-valued attributes that were fuzzified for use in the fuzzy learning

classifier system. Two separate experiments were carried out, the first constructed

fuzzy rules based on the C4.5 rules. Fuzzy rules were created using a genetic algo-

rithm and had a significant improvement over the original rules. An implementation

of a fuzzy learning classifier was then applied to the dataset and resulted in a slight

improvement of the rules.

A Genetically Programmed Learning Classifier System was used in [16] and was

originally designed to be an intelligent agent used to support the maintenance of the

www.manaraa.com

11

Joint Strike Fighter aircraft. The system was able to learn to optimize its results of

tasks including inventory purchase, and mobile agent functionality. The system used

genetic programing for representation and used a full bucket-brigade fitness passing

approach for learning and reinforcement. Crowding helps maintain diversity of the

population by comparing children to similar adults and replacing the least fit adult

with the new child. The system design was similar to the classic learning classifier

system as it uses an internal message list.

www.manaraa.com

12

4. BENCHMARK DESIGN

4.1. DATASET

The dataset for this research consisted of malicious executables as well as non-

malicious ones. Malicious software samples were obtained from Offensive Comput-

ing [17]. Non-malicious software samples were obtained from a machine freshly in-

stalled with Windows XP and a university campus computer learning center machine

running Windows XP. Clean executables included software created by Microsoft,

Adobe, MathWorks, other third parties, and open source software.

A primary assumption this thesis makes is that malicious files will be distin-

guishable from goodware based upon the structure of the PE file including section

names and entropies as well as the import address table. While in the real world

this assumption would not always hold, for the purpose of this research, this is an

acceptable assumption for determining whether an LCS can potentially be used for

malware detection.

Windows executables, both malicious and non-malicious, are written in the

portable executable (PE) format. PE files start with a DOS header, followed by a PE

header, and contain a number of sections. Each section has a header which describes

its data and resources. A typical Windows application has nine predefined sections:

.text, .bss, .rdata, .data, .rsrc, .edata, .idata, .pdata, and .debug [18]. Each section

has a different purpose, for example .text is used to store program code while .data

is used for global variables.

One important section is the import data section which contains the Import

Address Table (IAT). The IAT is where every external function called by an executable

is stored. This table includes the name of the function and the name of the dynamic

link library (DLL) in which the function is stored.

Different types of files contain a variety of imports, and the number of imports

a file includes depends on its purpose. For example, kernel32.dll is a common dy-

namic link library which provides functionality to all of the fundamental Windows

application programming interfaces. This includes access to memory management,

www.manaraa.com

13

Figure 4.1: Pre-processing stage

file system input/output, process and thread creation, and error handling. Many

user programs import functions from kernel32.dll to provide basic functionality. ker-

nel32.dll itself imports these functions from the native API DLL ntdll.dll, and has

391 imported functions. This high of a number of imports is uncommon for most

executable files, but is not so uncommon for DLLs.

4.2. PRE-PROCESSING

An overview of the pre-processing method is shown in Figure 4.1. This stage

takes each file from the dataset and passes it through VirusTotal to determine its

maliciousness, and then extracts a set of features from the file.

4.2.1. VirusTotal. VirusTotal [19] is a online web site that offers a free

analysis of files. It is an independent service that runs multiple anti-virus engines on

each file to identify viruses, worms, trojans and other malicious software. VirusTotal

maintains an updated version of each anti-virus engine to ensure they include the

latest virus signatures. At the time of this writing, 43 different anti-virus engines

were in use.

Each executable file used in this research was submitted through VirusTotal’s

API for analysis. The result from VirusTotal was used as the ground truth in deciding

whether or a not a file was considered malicious or not.

The set of samples from Offensive Computing does not contain just malware. If

more than 25 percent of the anti-virus vendors VirusTotal uses to scan a file report

malicious, then the file is considered malicious. This eliminates the possibility of a

single anti-virus software misclassifying a file. Each file was checked to make sure that

www.manaraa.com

14

Figure 4.2: Sample output from VirusTotal

VirusTotal is consistent with the dataset the file came from; i.e., a sample from the

malware set must be identified as malicious and a sample from the goodware set as

non-malicious. If it is not consistent, the sample is considered unknown. Furthermore,

all samples (malicious or not) that are not in VirusTotal’s database are also considered

unknown. All unknown samples are not used in the results presented in this thesis,

as they cannot be verified as being definitely malware or goodware.

An example of a file submitted through VirusTotal’s web interface is shown in

Figure 4.2. The results from a selection of the anti-virus engines are shown for one

of the pieces of malware used in this research. During preprocessing, if these results

indicate a file is malicious, it is marked as such in the dataset.

4.2.2. Feature Extraction. Feature extraction takes features and char-

acteristics of the executables and turns the information into a format used by the

LCS. The IAT from each executable is parsed to generate a feature list containing

all of the imported functions each executable references. The list of sections is also

extracted, along with their sizes and entropies. The feature extractor implemented

using an open source tool called pefile [20].

www.manaraa.com

15

Figure 4.3: Number of imports per file

Details of the full dataset and extracted features are as follows:

• 6,774 total files

• 3,401 malicious files

• 3,373 non-malicious files from Windows XP

• 58,584 total unique imports

• 703 total unique sections

A graph of the number of imports per malicious and non-malicious file is shown

in Figure 4.3. An interesting note is how many malicious files have a low number of

imports, and the most common number of imports for clean files is much higher than

that of malicious files.

Looking at the most common imported functions, Figure 4.4 shows the number

of malicious and number of clean files that imported each function. All but one of

these functions exist in kernel32.dll, the fourth most popular came from advapi32.dll

www.manaraa.com

16

Figure 4.4: Most common imports

which provides access to advanced services of Windows, including the registry. The

most popular imports were split about 50-50 in the number of goodware and mal-

ware files that use those functions. One outlier was kernel32.dll.ExitProcess(), this

function was imported more by malicious files than clean ones.

4.2.3. Executable Packing. Executable packing is a form of compression

and/or encryption of executable files, and the programs that perform the compression

are known as packers. Compression programs are utilized to minimize disk space

usage as well as network transfer times. Traditional programs like WinZip compress

files into a separate archive which must be extracted to disk to retrieve the original

files. Packers compress an original program into a new executable and add a stub

function which will unpack (decompresses and decrypt) the original executable into

memory. A packed executable runs without having to be separately extracted, unlike

.zip files. This process obscures the original file and makes it more difficult to reverse

engineer. One of the most common packers is the Ultimate Packer for eXecutables

(UPX). UPX is a free and open source executable compression tool that can be used

on Windows binaries as well as other platforms. UPX by itself is not malicious, but

many types of files including malware are packed using it.

www.manaraa.com

17

When malware is packed, the size of the file is decreased, but more importantly

the signature of the file changes and this makes it more difficult for anti-virus soft-

ware to detect. Two potential downsides to packing are the additional computation

overhead at run-time to unpack the original and the fact that the packing process

creates a signature which can be detected [21]. All packers have the same weakness:

they must unpack the original executable into memory in order to execute it; they

can not stop analysis of a file, they can only make it more costly [21].

Around 90%, of malware samples use some form of packing [22]. Popular packers

(ASpack, FSG, Morphine, UPX, MEW) are detected by most anti-virus software, but

many of the less common ones have very poor detection rates [22]. By using multiple

packers on the same family of malware, malware authors can evade detection for longer

periods of time. Some scanners incorrectly flag packed but legitimate executables as

malicious or suspicious. There are advanced packers that make analysis harder, by

including routines to make memory debugging and dumping more difficult, and not

all anti-virus products account for the various types of packers.

4.2.4. Entropy. Entropy in information theory is a measure of uncertainty

in a series of bytes [23]. Similar to how sentences are not random sequence of letters,

Windows executables are not random sequence of bytes, and the entropy of a block

of data is a measurement of uncertainty in those bytes. Having a high entropy does

not imply randomness; compression creates a high level of entropy but leaves data

highly structured [24]. Compressed and encrypted data will look very similar from

an entropy point of view.

In binary files, entropy can be calculated by counting the number of times

each byte occurs. Entropy of a discrete random variable x can be calculated by the

formula [23]:

H(x) = −
n∑
i=1

p(xi) log2 p(xi) (1)

where p is the probability mass function of x and p(xi) is the probability of the ith

unit of information. One byte contains 8 bits and there are 28 = 256 possible values

(00h - FFh). The unit of entropy in Equation 1 is the bit, and entropy ranges from

0.0− 8.0 for a sequence of bytes.

www.manaraa.com

18

Analysis of different types of executables, including native windows executables,

packed executables, and encrypted executables, resulted in different levels of entropy

for each file type [24]. The results show that executables with an average entropy of

6.677 or greater are statistically likely to be packed or encrypted. Malware authors

can conceal encryption or compression by adding in redundant bytes or including

invalid blocks or blocks with all zero values to lower a binary’s entropy. Malware

executables that exceed this average entropy are considered to be packed.

Each PE file contains a number of sections that the operating system loads,

some contain data and some contain executable code. Malware can make analysis

more difficult by using nonstandard sections and renaming them. All of the malware

samples in this research were analyzed in a pre-processing stage. During this analysis,

each section of each file was analyzed for its name, size, and entropy. Figure 4.5 shows

the top 11 PE sections in the data set, shown by the total number of sections used

in malicious and non-malicious files. Eight of the sections are generated by standard

compilers and linkers and they are: .rsrc, .data, .text, .reloc, .rdata, .idata, .bss, and

.edata. Of the remaining three sections, UPX0, UPX1 are generated by the UPX

packer and the third section’s name contained a string of the unprintable byte ‘\x00’

and is not a standard name section. Malware may create a non-ASCII or random

name of a section to obfuscate its purpose.

From the set of clean files, 108 unique section names were found, and 622 dif-

ferent section names were found in the set of malicious files. The large difference is

due to malware creating non-standard names to make analysis more difficult. Sec-

tions that have a size 0 are uninitialized initially and when the program is run and

copied into memory, these 0-byte sections could get filled with data or unpacked code.

Ignoring empty sections, 26.4% of all the malicious sections in the dataset were de-

termined to be packed; and 2.4% of the non-malicious sections. Each file contains

multiple sections, and 69.2% of malicious files contained at least one section that was

determined to be compressed or encrypted, while 10.2% of non-malicious files had

one or more packed sections. Malicious programmers are more likely to pack their

executables, as it saves network transfer time and disk space and some packers make

it more difficult for anti-virus software to detect and reverse engineer.

www.manaraa.com

19

Figure 4.5: Number of PE sections

Different packers compress their data into different sections, some use the default

ones, and others create their own sections (as shown by UPX). Figure 4.6 shows the

most popular sections that contained data with high entropy and are most likely

packed. The most popular packed section was UPX1, which is the section UPX use

to store the compressed data of the original executable. A small amount of non-

malicious files had packed UPX1 sections. As mentioned earlier, UPX is not only

used maliciously, it also has legitimate uses. Seven clean third-party executables

were packed using UPX including gpg.exe - Gnu Privacy Guard, a file and email

encryption tool and winscp.exe - an open source SFTP and FTP client for Windows.

There are legitimate programs that use packing tools, but they are in the minority,

and no Windows files were found to be packed.

The other top packed sections include default ones, the string of ‘\x00’, and

UPX2. Interestingly, the only packed section that more non-malicious files contained

than malicious was .reloc. The .reloc section holds a table of base relocations, which

are adjustments to an instruction if the loader cannot find a file. The relocation data

in this section inherently has a high entropy, and is not necessarily the product of a

packer. The UPX0 section seen in Figure 4.5 is the section that UPX uses to unpack

www.manaraa.com

20

Figure 4.6: Number of high-entropy PE sections

Table 4.1: PE file errors preventing feature extraction

pe instance has no attribute ’directory entry import’
invalid nt headers signature.

no optional header found, invalid pe32 or pe32+ file
data at rva can’t be fetched. corrupt header?
data length less than expected header length.
invalid e lfanew value, probably not a pe file

the original executable into memory, it initially starts empty on disk and therefore

has a entropy of 0, so it does not appear in Figure 4.6.

Files with corrupt or missing IATs could not be analyzed in this system, Ta-

ble 4.1 lists all encountered PE errors reported by pefile. 847 files were found to be

incompatible for feature extraction. These files could be malicious executables that

have been purposely modified by their authors to change the content of their PE

header in order to make analysis harder.

www.manaraa.com

21

4.3. FILTERING THE DATASET

Occasionally, a malicious file has an identical set of features as a non-malicious

file. Any detection system would inherently not be able to tell the difference between

files with identical features. These files were removed from the dataset to increase

the usefulness of the evolved rules. Files with corrupt or missing IATs could not be

analyzed in this system. Extracting additional features would improve the number of

files that could be used in the system; these features are discussed in the future work

section.

As described earlier, many malicious programs are packed, and building a system

to identify packed files is trivial as they have a much different structure than unpacked

files. A detector that can identify packed files may do reasonably well as a malware

detector, considering many malware samples are packed, and not many goodware

files are packed. It is also easy to separate .dll files from regular .exe executables, and

although link libraries are written in the same format, they are not directly executable

themselves but provide functionality to other programs. The dataset was hardened

by removing packed executables, as well as clean files such as link libraries that were

not .exes. This subset of files is more difficult to distinguish, as the features have

more in common. The details of the unpacked and filtered dataset are as follows:

• 854 malicious files

• 1,048 non-malicious files

• 18,804 unique imports

• 126 unique sections

There are two types of noise that classification and data mining problems can

have [25]. The first type, known as classification noise, makes it impossible for the

system to develop to achieve 100% testing accuracy; the predictive attributes of the

training set do not allow perfect prediction of the test set. The second type of noise,

attribute noise, are attributes within the problem domain that aren’t useful in the

system’s prediction, they have no relationship to class. These attributes are known

as non-predictive attributes. In certain problems the distinction between predictive

www.manaraa.com

22

and non-predictive attributes is a goal of the system, and noise in the dataset is a

common and important problem [25].

4.4. C4.5 DECISION TREE ALGORITHM

C4.5 is a machine learning decision tree algorithm first introduced in [26]. It

is known as a statistical classifier as it uses the statistics of a population of data

to generates a decision tree. Through supervised learning, C4.5 takes a training set

of data with individuals of known classes and separates them into groups based on

quantitative information taken from their traits and characteristics. C4.5 chooses

each node of the decision tree based on what attribute most effectively split the data

into class subsets.

Decision trees are built using a statistical property called information entropy.

It uses entropy as the basis for its choices, using the difference in entropy (information

gain). Information gain is a measurement of how well a feature separates training

instances into target classes. The tree building process favors features which distinctly

separate class members. A leaf in a decision tree indicates a class, and a decision node

specifies a test to perform on a single attribute. Each outcome from the test branches

to its own subtree. An example subtree of a decision created on the dataset used in

this research is shown in Figure 4.7.

C4.5 has been shown to be outperformed by a genetic algorithm batch-incremental

concept Learner on a 6-input multiplexer problem [27]. The problem had 6 features

and each feature had 2 possible values, for a total of 64 problem instances repre-

sented by 12-bit strings. Multiplexer problems describe a k-input boolean function

from input/output examples, but any single input line is not helpful in determining

class membership [27]. The poor performance of C4.5 in this test was not attributed

to using a decision tree for its representation, but to an information theoretic search

bias [27]. This bias is created by the classification description and representation of

the problem as well as the search algorithm.

4.5. C4.5 BENCHMARKING RESULTS

For a baseline comparison, C4.5 was run on the benchmarking dataset. This

was implemented in the open-source data mining and machine learning suite called

orange [28].

www.manaraa.com

23

Figure 4.7: Portion of a decision tree created using C4.5

To determine how C4.5 performs on different size datasets, multiple runs of

varying sizes were studied. One limitation of the C4.5 implementation in the orange

framework was the size of the dataset it was able to analyze. When using large

datasets, the number of features grew into the tens of thousands and C4.5 crashed

while being run; this limitation could be a feature dimension memory constraint or a

limit of the framework used.

One benefit of C4.5 is that it has a low computation time. After being given a

problem description, C4.5 does not take long to generate a decision tree. Generating

the problem description turned out to be a much longer task than the running of

the algorithm. C4.5 is dependent on having a complete description of all problem

instances and features. Each dataset must be organized into a table format describing

all instances and attributes. Generating a table with hundreds of rows (problem

instances) multiplied by tens of thousands of columns (features) is not a trivial task.

Each run is averaged over a 10-fold cross-validation test, and therefore ten training

and ten test tables were generated for each run. The amount of time required to

generate the descriptions C4.5 uses to build trees offsets the small run-time of the

algorithm itself.

www.manaraa.com

24

Figure 4.8: C4.5 Results

Results from using smaller datasets are presented in Figure 4.8. As the dataset

size increases, the number of leaf nodes increases as well. More attribute values are

required to split larger datasets. Larger datasets include a higher number of training

features and they create a larger space to search through, thus the need for larger

decision trees. The testing accuracy of C4.5 ranged from 75.0% on a dataset of 100

files to 85.0% on a dataset of 600 files.

C4.5 is a non-adaptive technique, and its ability to classify files does not improve

over time. In order to run on different size datasets, C4.5 requires a complete de-

scription of the training dataset and attribute list. It is a batch learner and if a single

new problem instance is added, the description must be re-calculated and C4.5 starts

over from scratch. Adaptive techniques, on the other hand, are able to continuously

improve their results as they learn a dataset. If an adaptive learning algorithm was

used, specifically an incremental learner, adding a new problem instance would not

require starting the algorithm over from scratch.

www.manaraa.com

25

C4.5 was not able to parse large datasets, and table generation required a much

larger amount of time than the algorithm itself took to run. C4.5 cannot reach optimal

performance on the tests of the benchmark dataset. These results indicate C4.5 is

not optimal for running on sparse datasets with lots of attributes. These drawbacks

of C4.5 warrant an investigation of adaptive machine learning techniques that may

be able to outperform C4.5.

www.manaraa.com

26

5. EVOLUTIONARY COMPUTING

Learning classifier systems are adaptive machine learning systems from the field

of evolutionary computing. They combine aspects of computer science and biology.

Evolutionary computing draws inspiration from natural processes such as the Dar-

winist theory of natural selection. On a computer, evolutionary processes can be

simulated at speeds thousands of times faster than real-time. Evolutionary computa-

tion applies Darwin’s survival of the fittest principle to a population of individuals.

Evolutionary computing techniques search a problem space by evolving solutions that

become better over time, as they adapt to the problem.

Recent advances in technology have created a demand for automatic problem-

solving as well as an increase in the complexity of problems humans are trying to

solve. Algorithm design can not keep up, and there is a need for general algorithms

that can be applied to a wide range of problems and still deliver acceptable, but

not necessarily optimal, solutions. Evolutionary computing can fulfill this need by

providing automated solutions with acceptable solutions in less time than developing

a tailored algorithm design.

Evolutionary algorithms (EAs) drive the field of evolutionary computing. EAs

act on a population of individuals, each of which represents a solution to the prob-

lem, and by appling environmental pressures, they simulate the biological process of

natural selection and the overall fitness of the population is increased. A general

evolutionary algorithm is given in Algorithm 1.

Algorithm 1 General evolutionary algorithm process

Initialize the population with randomly-generated candidate solutions
Evaluate the fitness of each individual
while termination condition is unmet do

1. Competitive selection of parents based on fitness
2. Apply genetic operators to parents to create offspring
3. Evaluate the fitness of the offspring
4. Remove some of the least-fit individuals from the population

end while

www.manaraa.com

27

Figure 5.1: Evolution Cycle

Each generation chooses a selection of individuals to reproduce, promoting genes

that represent a better solution. This determination is based on an evaluation func-

tion, called the fitness function, that grades each individual. The initial random

population is graded on a fitness measure and parents are selected based on fitness.

The stochastic processes of mutation and recombination to genes of parents creates

children with the goal of creating individuals with a higher fitness, thus moving the

population closer to an optimal solution to the problem. The new candidates compete

with existing ones for a place in the next generation. A visual overview of the process

is presented in Figure 5.1.

5.1. EVOLUTIONARY ALGORITHM COMPONENTS

Biological processes in nature influence individuals to become better adapted

to an environment and those that survive long enough to reproduce pass on their

genes, slowing evolving the entire population. There are many components of nature

that contribute to these biological mechanisms, and EAs simulate many of these

components. Each one contributes to how the algorithm runs.

5.1.1. Representation. The definition of an individual represents how

it forms a possible solution to a problem. This maps the original problem onto a

problem landscape that can be searched by the EA. The problem space is encoded

into a space that can be represented by genes, which is where the evolutionary search

takes place.

www.manaraa.com

28

5.1.2. Fitness function. The fitness function (evaluation function) of an

EA estimates a solution’s quality. It guides the evolution process as the EA uses this

measure for selection and determination of which solutions are considered better. As

fitness is evaluated many times during evolution, an ideal function is closely mapped

to the algorithm’s goal and can be computed quickly.

5.1.3. Population. EAs process a collection of potential solutions. Individ-

uals themselves do not evolve, the population as a whole does as better individuals

are inserted and poorer ones are removed.

5.1.4. Parent selection. Parent selection chooses individuals to reproduce

and pass on their genetic encodings of a solution. The selection is probabilistic to

promote fitter individuals. Parent selection is responsible for improving the quality

of the population.

5.1.5. Recombination. Recombination mixes information (genes) from

two solutions into new ones. The parts from each parent to combine are chosen

stochastically. The goal of and recombination is to combine desirable features from

two individuals into a single child.

5.1.6. Mutation. Mutation in an EA slightly modifies an individual to create

a mutant, much like a mutation in biology. Mutation causes a random, unbiased

change in the genes of a solution.

5.1.7. Survivor selection. Survivor selection is similar to parent selection,

as it chooses individuals based on their fitness, but is used after offspring have been

created. The population size is generally static and survivors are selected to move on

to the next generation.

5.1.8. Initialization. Initialization in an EA is generally done by random

generation, but problem-specific heuristics can be used to try and create a higher

fitness initial population.

5.1.9. Termination. An EA runs until a termination criterion is met.

Common options are a length of time, fitness evaluations, or fitness stops improving.

5.2. GENETIC PROGRAMMING

Genetic Programming is an evolutionary computation (EC) technique that searches

for computer programs solve a described problem. This automated problem solving

www.manaraa.com

29

Figure 5.2: Genetic programming tree representation

method takes a high-level statement of the problem and does not require the user to

specify the structure of the solution.

Genetic programming differs from other forms of evolutionary computation by

using different forms of representation, initialization, genetic operators, and fitness

evaluation.

5.2.1. Representation. In genetic programming, individuals are normally

expressed as syntax trees, not lines of code. The variables and constants of a program

are the leaves of the tree (known as terminals) and arithmetic operations are the

internal nodes (functions). The set of terminals and functions make up the primitive

set of a genetic program. An example representation is shown in Figure 5.2 which

corresponds to the equation: (3.5 ∗ (X− 8))/(4 + sin(Y)).

5.2.2. Initialization. In genetic programming, two common initialization

methods are grow and full. In both methods individuals are created so they do not

exceed a specified maximum depth. Depth of a node is measured by counting the

number of edges it takes to traverse to the node starting from the root node. The full

method creates by randomly selecting nodes from the function set until the maximum

depth is reached, then terminals are randomly selected. Each tree is full and all leaves

are at the maximum depth. The grow method creates trees of varying size and shape.

Nodes are selected from the full primitive set, unless maximum depth is reached,

when only terminals can be selected.

www.manaraa.com

30

5.2.3. Recombination. Recombination in GP differs from other evolution-

ary algorithms, the most common method is subtree crossover. In subtree crossover,

a crossover point is randomly selected in two parents and the offspring is created

by replacing the subtree rooted at the first parent’s crossover point with the subtree

rooted at the second parent’s crossover point.

5.2.4. Mutation. The most common form of mutation in genetic program-

ming is known as subtree mutation. This method randomly chooses a mutation point

in an individual’s tree and replaces the subtree rooted at that node with a randomly

generated subtree. Another mutation method, known as point mutation, selects a

random node and replaces the primitive with a random primitive of the same arity.

This is genetic programming’s equivalent of the bit-flip mutation used in genetic algo-

rithms. Subtree mutation replaces exactly one subtree, while point mutation happens

on each node with a specified probability, allowing multiple nodes to be mutated.

www.manaraa.com

31

6. LEARNING CLASSIFIER SYSTEMS

Learning classifier systems combine reinforcement learning (RL) with evolution-

ary algorithms to create a rule-based expert system. The earliest learning classifier

system concept was introduced by John Holland in 1976 [29] and was an expansion on

his earlier invention, the genetic algorithm (GA) [30]. Holland expanded his frame-

work into what became the standard learning classifier system. But this system was

too complex to realize the intended behavior/performance [31], and Wilson created

additional classifier systems which kept the original framework from Holland but sim-

plified it to increase its performance. These new systems are discussed later in this

section.

The basic framework of an LCS consists of (1) a finite population of classifiers

that represents the current knowledge of the system, (2) a performance component,

which regulates interaction between the environment and classifier population, (3)

a reinforcement component, which distributes the reward received from the environ-

ment to the classifiers and is the learning mechanism, and (4) a discovery component

which employs an EA to evolve better rules [32]. Each rule is in the form of “IF

condition THEN action”, and when the information from the environment matches

its condition, the rule is used in the decision making process. The condition of a rule

encodes when the rule is applicable to the environment and the action of a rule tells

the system what action to perform.

LCSs can be applied to different problem domains including optimization prob-

lems, classification problems, and RL problems [33]. Optimization problems are

solved by searching a solution space for the best solution. One issue with optimiza-

tion problems is when there are local optimums, the fitness function may mislead an

algorithm away from the global optimum. In a classification problem, the LCS learns

to which class each problem instance belongs. Feedback is immediate and problem

instances can be sampled independently. Contrary to classification problems, feed-

back in RL problems provides an indication of the quality of an action and may not

be immediate. RL problem instances may be dependent on each other, as subsequent

input depends on previous input and chosen actions [33]. Classification problems can

www.manaraa.com

32

be redefined as single-step RL problems where reward is immediate. Multi-step RL

problems have delayed reward that propagates backwards. Malware detection is a

boolean classification problem, where each problem instance (a file) can be classified

as one of two classes (malicious or non-malicious). This classification problem can

be learned by an LCS when converted into a single-step RL problem. A classifica-

tion learning system’s goals are to have a high percentage of correct classifications

(accuracy) while being able to classify unseen problem instances (generality) [33].

6.1. DISCOVERY

As described earlier, evolutionary algorithms or genetic algorithms drive the

discovery mechanism of a LCS. New rules are created in hopes of being rewarded

with a higher payoff than that of their parents. The EA in an LCS operates on a

population of rules or rulesets, each of which represents a solution to the problem.

The condition of each rule is encoded in its genotype and the solution is represented

by the action of the rule. The evolutionary algorithm operates on individuals, mixing

their genes by recombination and mutation. This process allows for new rules to enter

the population and compete in natural selection.

6.2. LEARNING

In the field of artificial intelligence, learning is defined as the improvement in

performance by acquiring knowledge through experience [32]. Reinforcement learning

drives the evolutionary component of the LCS. In reinforcement learning, a learning

system attempts to maximize reward by learning through trial and error. This ap-

proach is similar to animal learning theory, where secondary reinforces cause animals

to associate external stimuli with food or pain [31].

Along with a condition and action, each rule has values associated with its

fitness. The environment provides a numerical reward which guides the learning pro-

cess. As the environment distributes reward, iterative updates to fitness parameters

drive the LCS learning mechanism. Reinforcement learning serves two purposes: to

promote individuals that obtain high rewards and to help discover better rules [32].

www.manaraa.com

33

6.3. MICHIGAN AND PITTSBURGH STYLE LCS

After Holland first introduced the LCS, that style became known as a Michigan-

style LCS [32]. The evolutionary algorithm operates on the individual level and the

entire population of rules represents a solution. An alternate LCS implementation

was introduced and became known as Pittsburgh-style [34]. In this type of LCS, a

population consists of variable length rule sets. Each rule set is a potential solution

instead of each individual. The EA operates on the level of an entire rule set in a

Pittsburgh-style LCS.

Each style of LCS is best applied to a certain type of learning. Pittsburgh style

LCSs are usually applied in “offline” or batch learning scenarios, where all training

problems are presented simultaneously to the learner which results in a rule set that

does not change over time [33, 32]. Michigan style LCSs are designed to work “online”,

incrementally learning each problem instance individually and evolving the rule set

over time with each new observation. Offline learning is characteristic of data mining

problems. This research uses a Michigan style LCS to continuously evolve a malware

classifier.

6.4. OVERGENERAL CLASSIFIER PROBLEM

The concept of strong overgenerals in learning classifier systems is discussed

in [35]. Two problems faced by learning classifier systems are overgeneral rules and

greedy classifiers. A general classifier has a condition that matches many problem

instances. Overgeneral classifiers advocate the desired action in some of the conditions

they match, but not all of them, so performance suffers in these states. The greedy

classifier problem occurs when the fitness of a classifier depends on to the magnitude

of the reward it receives. Rules which match in high reward parts of the environment

will reproduce often and there may not be enough rules that match low rewarding

states [35]. The overgeneral and greedy rule problems combine to create problematic

rules that are known as strong overgenerals. These rules act correctly in high reward

states and incorrectly in low reward states. Strong overgeneral rules are unreliable,

but outweigh reliable rules during action selection.

The problem concerns the generality versus specificity of rules. When a general

rule has a higher reward prediction than a specialized rule and both match a certain

www.manaraa.com

34

condition, a problem can arise. If the two rules have different actions, the one with

higher reward will be chosen. While the general rules will be chosen since it has

a higher reward prediction, the action proposed by the specialized rule may be the

better choice in certain conditions.

Solutions to the problem of overgenerals include fitness sharing techniques and

an accuracy-based fitness. Fitness sharing uses reward competition to eliminate

strong overgenerals. Some types of LCS use a fitness based on how accurate a rule can

predict its reward, and promotes those with a low variance. The strong overgeneral

problem shows the importance and challenge in defining the structure of the problem

to solve and the objective of the learning system.

6.5. STRENGTH-BASED AND ACCURACY-BASED FITNESS

In traditional strength-based learning classifier systems, a rule’s fitness is known

as its strength. The strength value is used in both action selection and reproduction.

XCS introduced a new method of using different values for action selection and re-

production.

In strength-based fitness, fitness is equal to strength and is the only value used

for action and parent selection. Strength is updated using reward from the environ-

ment as well as a learning rate constant.

In accuracy-based fitness, the strength parameter is still calculated using the

same method but it is also used to calculate other parameters used in reproduction

selection. Strength is also known as prediction, as it predicts the reward a rule will

receive when it is used in the system. The other parameters used in accuracy-based

fitness are based on the prediction value. Prediction error estimates the error of a

rule’s prediction value. The accuracy of a rule is based on an error threshold and

a rule is fully accurate if its error is below that threshold. Relative accuracies are

calculated for each rule in the action set. Fitness is updated to represent the average

of each rule’s relative accuracy.

6.6. ZCS

The Zeroth-Level Classifier system was originally proposed in [36]. The goal of

the system was to keep the original ideas of LCS but to make a simplified version of

www.manaraa.com

35

it, to increase its understandability as well as its performance. ZCS did not have the

shortcomings of the complexity of the original LCS, yet still had good results.

ZCS removed the internal message list and rule-bidding from the original LCS

framework, as well as removing unnecessary algorithmic components originally in-

troduced to improve performance of LCS [32]. Without a way to pass information

between iterations, ZCS’s rules depend on how the system interacts with the envi-

ronment. Each rule r in ZCS has three main components: r = (c : a→ s) where:

• c is the condition which represents the environmental state the rule matches

• a is the action which the rule advocates

• s is the cumulative credit a rule has received (strength)

In every cycle of ZCS, the match set is generated to contain all individuals that

match the current set of inputs of the environment. ZCS introduced the idea of using

action sets, groups of rules with the same action, instead of individual rules for action

selection and reinforcement. The match set is subdivided into action sets according to

the action each matching rule advocates. Action selection uses a fitness proportionate

selection, where fitness is the sum of the rules’ strength in each action set. Figure 6.1

shows the typical structure of ZCS.

Discovery in ZCS is caused by two mechanisms, an EA and a covering operator.

For each time-step, the EA has a certain probability of being invoked. It uses roulette

wheel selection to choose two parents based on their fitness and creates two offspring

using crossover and mutation. Rules are deleted to make room for children using

roulette wheel selection based on the inverse of their fitness.

The covering operator is used to create a new rule with a condition that matches

the current state of the environment when no rules in population match, or when the

match-set does not contain enough high quality rules.

The original credit assignment technique in LCS was the bucket brigade algo-

rithm (BBA). When ZCS was introduced, it introduced a new concept which merged

ideas from BBA along with the Q-learning strategy used in other reinforcement learn-

ing problems [37]. Strength in ZCS moves from each action to the previous action

set which rewards sequences of actions that gain reward from the environment. A

discounting factor is used to create a preference for shorter chains of actions.

www.manaraa.com

36

Figure 6.1: ZCS overview

The rules in the system are continually updated as new rules are created. Re-

ward is divided among rules in each action set and the EA acts globally across the

entire population, which creates fitness sharing among rules. This preserves environ-

mental niches, action sets, but the system only preserves the rules in each niche that

lead to maximum reward.

www.manaraa.com

37

7. EXTENDED CLASSIFIER SYSTEM (XCS)

One drawback of ZCS is that it does not evolve a complete mapping of the

environment from rules and their actions to received rewards, as well as recombining

rules from different niches [38]. The eXtended Classifier System (XCS) was created

to address these issues.

XCS addresses the problem of generalization by using a niche GA along with

population-wide deletion. The specific problem of strong overgenerals is solved by

changing fitness from a strength-based measurement to an accuracy-based one [33].

The new fitness is derived from the accuracy of reward prediction, instead of reward

prediction itself, hence the reason XCS is known as an accuracy-based LCS. Using

accuracy-based fitness enables XCS to evolve an accurate solution for all problem

instances as well as a complete and accurate mapping of solutions to rewards rather

than focusing only on high-payoff niches in the environment. Reinforcement learning

is also known for learning a function that maps a complete representation of the

state/action space, and XCS is known for successfully bridging the fields of LCS and

RL [32].

Figure 7.1 shows the typical structure of the XCS algorithm. In XCS, five main

components make up a rule along with additional parameters:

• Condition C represents the environmental state the rule matches

• Action A is the action which the rule advocates

• Reward prediction R estimates the average reward the rule has received

• Reward prediction error ε estimates the error of the reward prediction

• Fitness F represents the relative accuracy of the rule

Reward prediction R is updated iteratively to represent a moving average mea-

sure of reward received by the environment. Fitness F is a function of prediction

accuracy instead of prediction magnitude and is scaled relative to other rules in each

environmental niche. An illustration of a rule is shown in Figure 7.2. Separating

www.manaraa.com

38

Figure 7.1: XCS overview

Figure 7.2: XCS rule representation

the credit assignment from the fitness used in evolution is one of the most import

innovations of XCS [32].

Rules in XCS include some additional parameters not present in the original

LCS:

• Action set size as estimates the average size of the action set a rule belongs to.

• Time stamp ts specifies when the rule was last included in evolution

• Experience counter exp keeps a record of how many parameter updates the rule

has received.

www.manaraa.com

39

• Numerosity num is used to combine multiple identical rules into one single rule,

and numerosity is the count of rules the macro-rule represents. This speeds up

computation time.

7.1. INITIALIZATION

XCS may start with either an empty population or a population of randomly

generated rules, which have a random condition and action. If the population is

empty, the covering operator creates a new rule for each problem instance that is not

covered by the current population of rules. The difference in these two methods is

studied in the results section. An advantage of initialization due to covering is that

the problem space is immediately covered [33].

Population initialization needs to provide a general population in order to pro-

vide enough time for evaluation and EA application [33]. If the population size is

too small or the initial population is over-specialized, this requirement is not met and

XCS does not perform optimally. Covering normally occurs briefly at the start of

a run until a population is established that covers all of the problem instances. If

rules’ conditions are too specific, XCS can get stuck in an infinite covering-random

deletion cycle [33]. This cycle is due to the population being of a fixed size, and

if the population is already full when covering is applied, a rule must be deleted to

make room for the covering rule. If coverage is continuously triggered, the system

will remove an individual, and evolutionary pressures do not have time to take affect.

7.2. EVALUATION

Rule evaluation is done every iteration and is detailed in [33]. The match set,

[M], contains all rules that match the current problem instance. If the match set is

empty, the covering operator is applied. From the match set, a prediction array P (A)

is formed:

P (A) =

∀r ∈ [M]
∑

r.A=A

r.R ∗ r.F

∀r ∈ [M]
∑

r.A=A

r.F
(2)

www.manaraa.com

40

The prediction array is a fitness-weighted average of all reward predictions from

the rules in the match set that recommend action A. Action selection methods

for XCS are usually explore, randomly selecting an action found in [M], or exploit,

deterministically choosing the best action within [M]. Typical schemes alternate

between the two methods from one iteration to the next.

In classification problems, rules in action set [A] are immediately updated with

reward P from the environment. In single step problems P is equal to current reward,

while in RL problems it equals current reward plus a discounted future reward. Pa-

rameters are updated in this order: prediction error, prediction, fitness. The update

algorithm is very similar to Q-learning.

First, reward prediction error ε for each rule in [A] is updated:

ε = ε+ β(|P −R| − ε) (3)

Learning rate β controls accuracy and adaptivity of the moving average estima-

tion [33]. Next, reward prediction R for each rule in [A] is updated:

R = R + β(P −R) (4)

The fitness of each rule is based on a scaled relative accuracy κ′ which is calculated

as follows:

κ =

 1 if ε < ε0

α(ε
ε0

)−ν otherwise
(5)

κ′ =
κ∑

r∈[A]
r.κ

(6)

κ is an estimate of a rule’s accuracy that uses a power function with exponent ν to

prefer low error classifiers. Threshold ε0 is a maximal error tolerance, and rules with

error below this threshold are considered accurate. Relative accuracy κ′ is scaled

with respect to the rules in [A]. This has the effect of fitness sharing, each rule in [A]

competes for a limited resource that is dependent on κ.

www.manaraa.com

41

The fitness F of each rule is finally updated:

F = F + β(κ′ − F) (7)

Fitness represents the average, relative accuracy of a rule.

The action set size as is also updated in a similar way:

as = as+ β(|[A]| − as) (8)

Additionally, the reward prediction, prediction error, and action set size parameters

are updated using a moyenne adaptive modifiée (adaptive average-based modification)

technique [33]. This method sets the parameter value directly to the average of the

values received thus far, if the experience of a classifier is less than 1/β.

7.3. EVOLUTION

Genetic reproduction in XCS is performed by a genetic algorithm which runs

on the current action set [A]. Evolution is performed if the average time since the

last EA application (stored in the timestamp parameter of all the rules in [A] exceeds

threshold θEA.

Two parents are selected using proportionate selection based on rules’ fitness.

Two offspring are created using crossover and mutation on the parents. Offspring

parameters are initialized by averaging the parent’s fitness F , prediction R, and

prediction error ε. The fitness F of offspring is decreased to 10%, being pessimistic

about the offspring [33]. Offspring are not assumed to have high fitness based on the

performance of their parents. Experience exp is set to 1.

If the population size is greater than the specified maximum, extra rules are

deleted with a probability proportional to their action set size parameter as. If a

rule has experience greater than threshold θdel and a fitness lower than a fraction

(parameter δ) of the average fitness F̄ of rules in the population, its probability of

being deleted is multiplied by F̄ /F , increasing the chance of removal of the lower fit

individual.

www.manaraa.com

42

8. SYSTEM DESIGN

The learning classifier system this thesis is based on is a variant of the XCS

model. It has been adapted for use in the problem domain of malware detection,

including replacing the bit string representation with s-expressions. An overview of

this learning classifier system is shown in Figure 8.1.

The training and test sets come from the pre-processing component of the sys-

tem. Once all the executables are analyzed and features are extracted, the learning

classifier system takes the feature list and evolves rules until a termination condition

is met.

8.1. LEARNING CLASSIFIER SYSTEM

8.1.1. Rule Representation. Traditional LCS and XCS implementa-

tions operate on bit-string representations of problems. These fixed-length bit-string

representations are not optimal for searching problem spaces which are described

symbolically or for problems with both syntactic and semantic constraints, which can

vary in length and complexity [27].

In this system the condition part of each rule is represented as an s-expression.

S-expressions can be visualized as a tree structure where internal nodes are one of the

logic operators {AND,OR,NOT} and leaf nodes (terminals) are a single feature (an

example is shown in Figure 8.2). S-expressions allow for more complex forms of logical

relationships to be expressed over bit-strings; it is an assumption of this research that

malicious files contain complex relationships of features that are identifiable from

non-malicious files.

Since malware detection is a binary classification problem, the action of each

rule represents whether the file is classified as malicious or not.

8.1.2. Initialization. There are three methods of rule initialization in this

system: random, covering, and from a C4.5 decision tree.

During random initialization, each tree is built from the top down. Every node

has a chance of becoming a function or terminal node, the operator rate parameter is

the probability of a node becoming a function node (operator). If it is, an operator

www.manaraa.com

43

Figure 8.1: Malware LCS Diagram

Figure 8.2: Visualization of a subtree of a generated rule

is randomly chosen from the list of operators, and the appropriate number of child

nodes are created in the same fashion. If a tree is at the maximum tree height, the

node becomes a terminal node.

Initialization due to covering creates a rule when the current population does

not match a presented file. This enables the system to develop a complete coverage

of the training set, and recombination will allow the rules to generalize the dataset.

While the covering operator is used exclusively in this technique, it also available in

www.manaraa.com

44

the other initialization methods; it is invoked if a problem instance is not matched

by any rules.

A third initialization technique is generation from a C4.5 decision tree. The

tree can be converted to a ruleset, similar to the method used in [15]. Each leaf node

in the decision tree becomes an individual rule in the population. The initial set of

rules fully represents the decision tree, but is in a format that can be evolved by the

learning classifier system. By starting with the knowledge of the C4.5 algorithm, the

initial population begins with a higher fitness and accuracy.

8.1.3. Action Selection. A single problem instance in this system is a

randomly chosen file that is presented to the system. Each rule in the population is

a parse tree, and is compared to the extracted features from the file. If the parse tree

matches the feature, it is put into the LCS’s match set. If no rules match a given

malicious file during training, a covering operator creates a rule that has a matching

condition and inserts it into the population with a chance of spreading its genetic

material to offspring, allowing the population to classify the file. From the match set,

an action is chosen.

There are various methods of choosing an action, and XCS typically alternates

between two methods in an explore/exploit scheme [32]. Explore randomly selects an

action from within the action set, while exploit deterministically selects the action

with the highest reward. Once an action is chosen, the action set becomes the rules

in the match set that advocate the chosen action. The evolutionary algorithm is only

run during exploration and the fitness of rules is only evaluated during exploitation.

As seen in the system diagram in Figure 8.1, exploration combines the perfor-

mance component with the discovery component. New rules are created by the EA

and the system explores the search space in hopes of finding better rules.

Exploitation combines the performance component with the reinforcement com-

ponent. The action with the highest reward is chosen and the rules are rewarded if

the action was correct and punished if it was incorrect. Exploitation reinforces rules

that receive reward and evaluates the rules discovered during exploration.

This combination of methods allows the system to explore a large search space

while rewarding rules that lead to environmental reward. By alternating between the

two methods, the system spends equal amounts of time discovering and reinforcing,

thus creating a balance between the two.

www.manaraa.com

45

8.1.4. Rule Evaluation. The rules in the action set are updated every

iteration with reward from the environment. In the classification problem of malware

detection, environment feedback is immediate and based on whether the action selec-

tion was correct. In XCS, the RL technique is based on the Q-learning algorithm [39].

Three parameters are adjusted to determine the performance of a rule, in the order:

prediction error, prediction, fitness [33].

A feature is considered malicious or benign based on whether the file it was ex-

tracted from was identified as malicious or benign. It is important to realize that not

all features of a malicious file are themselves malicious; many malicious files have be-

nign actions and there is an overlap between the sets of benign features and malicious

features. Reward is based on whether the chosen action matches the classification of

the file.

8.1.5. Mutation. Mutation introduces random variation to individuals by

selecting a random mutation point. The subtree rooted at that node is replaced with

a randomly generated tree. The height of the generated subtree is limited so the

entire tree does not exceed the maxheight parameter, in order to keep processing

time from growing indefinitely. The terminal nodes were chosen using proportionate

selection from the vector of features extracted from the training set. Features were

chosen using roulette-wheel selection, with a probability proportional to the number

of times a feature appeared in the training set.

8.1.6. Crossover. Crossover works similar to that in Genetic Programming.

A subtree starting at a random node is chosen from each parent, and the subtree

from one parent replaces the subtree from the other parent.

While crossover of individuals represented by bit strings typically produces two

offspring, subtree crossover in genetic programming normally produces a single child.

While subtree crossover can produce two offspring, it is not commonly used [40]. The

effects of the number of children produced is studied in the results section.

During recombination the second parent’s random node selection was limited

to those nodes which would keep the heights of the offspring below the maxheight

parameter.

8.1.7. Evolutionary Algorithm. In XCS, the EA reproduces rules in the

action set, realizing implicit niching [41] as opposed to panmictic reproduction, where

www.manaraa.com

46

rules are selected from the entire population. XCS performs genetic reproduction if

the average time since the last EA invocation of the rules in the action set exceeds

threshold θEA.

The mechanism used for parent and survivor selection is tournament selection.

Parent selection chooses a set of classifiers at random, and the one with the highest

fitness is chosen to become a parent. In XCS an effective method for determining

parent tournament size is to make it proportional to action set size [33]. Parameter

τ represents the proportion of the action set that is used in the tournament. Since

the EA acts on individuals in the action set, selective pressure is based on the size

of the action set. If selection pressure is too weak, learning may not take place

and if selection pressure is too strong, crossover never has any effect since identical

individuals are crossed [33]. Survivor selection repeatedly executes a tournament of a

user specified size and deletes the least fit until the population size has been reduced

to its specified size. An age requirement has to be met before rules are considered for

parent and survival selection; a rule is not eligible for selection until the system has

presented it with θage files.

8.2. DECISION TREE INITIALIZATION

8.2.1. C4.5 rule initialization. One of the additions to traditional XCS

that this system includes is an initialization operator that takes a decision tree and

generates a corresponding ruleset. This enables the system to start with knowledge

about the problem and quickly narrow in on some of the optima in the problem space.

These may be local optima that the decision tree has found, and as with any EA, the

LCS faces challenges in finding the global optimum.

Each leaf node in the decision tree becomes a single rule in the LCS. There

is a one-to-one correspondence of leaf nodes and rules. This initialization method

combines the decision tree’s quick run-time with the benefits of an adaptive, evolving

ruleset. This approach quickly guides the LCS in the direction of high performing

rules, with hopes of evolving an even better population of rules. A potential downside

of this method is that the rules generated from C4.5 may guide the evolution process

towards a sub-optimal solution because C4.5 may overfit to the training instances.

www.manaraa.com

47

8.2.2. Specialization function. The number of rules generated from a

decision tree is equal to the number of nodes in that tree. The population size of

the LCS is static, and there may be space in the population for more rules than the

decision tree contained. An additional variation function was created for decision

tree initialization. The set of rules the decision tree created is specialized by adding

additional features to the tree condition of each rule. This allows a single rule from

the decision tree to be modified multiple times and inserted into the LCS population.

A subtree is generated and appended to the original decision tree rule. The

height of this subtree is controlled by the parameter SpecializationHeight. This

parameter controls how specialized the rule becomes, and the smaller it is, the closer

the specialized rule is to the original node in the decision tree.

8.3. PERFORMANCE METRICS

The goal of this system is to evolve rules using RL that will identify malware.

The pre-processing step first extracts features from the files and this collection of

features is divided into training and testing sets. The LCS evolved rules over the

training set, then evaluated them over the testing set.

Experiments were run using a stratified ten-fold cross-validation test. Each fold

contained 50% malware and 50% goodware.

A rule’s classification accuracy on a file maps to one of the following four cate-

gories:

1. True positive (TP): correctly classifies a malicious executable as malicious.

2. False negative (FN): incorrectly classifies a malicious executable as non-malicious.

3. True negative (TN): correctly classifies a non-malicious executable as non-

malicious.

4. False positive (FP): incorrectly classifies a non-malicious executable as mali-

cious.

www.manaraa.com

48

Three different metrics were tracked: (1) Classification Accuracy, (2) Detection

Rate (DR), and (3) False Alarm Rate (FAR). These are defined mathematically as:

classification accuracy =
TP + TN

TP + TN + FP + FN
(9)

detection rate =
TP

TP + FN
(10)

false alarm rate =
FP

FP + TN
(11)

The classification accuracy rates how the system performs in general, while detection

rate and false alarm rate show more specific metrics on the trade-offs between malware

coverage and false positives.

8.4. DEFAULT PARAMETERS

A list of default parameters the LCS uses in the experiments described in Sec-

tion 9, unless otherwise specified, is presented in Table 8.1. There are parameters

that relate to the EA, the LCS, and the individual rules.

A description of each parameter is provided next. More details on how the XCS

parameters are used are described in Section 7; the core set of these parameters are

the same ones as used in [33] with additional system-specific parameters.

• Population Size (µ) - Number of rules in the population

• Crossover Rate (χ) - Chance of using crossover to produce offspring

• Mutation Rate - Chance of using mutation to produce offspring

• Offspring Size (λ) - Number of offspring created per invocation of the EA

• Survivor Tournament Size - Number of individuals used in the tournament for

deleting excess rules

• Accuracy Parameter (α) - Accuracy power function coefficient; differentiates

accurate from inaccurate rules

• Accuracy Parameter (ν) - Accuracy power function exponent; controls the rate

of decrease of a rule’s accuracy as a function of its prediction error ε

www.manaraa.com

49

Table 8.1: Classifier system parameters

Parameter Name Parameter Value
EA parameters

Population Size (µ) 400
Crossover Rate (χ) 1.0

Mutation Rate 0.04
Offspring Size (λ) 1

Survivor Tournament Size 5
XCS parameters

Accuracy Parameter (α) 0.1
Accuracy Parameter (ν) 5.0

Error Threshold (ε0) 10
Learning Rate (β) 0.2

Parent Tournament Proportion (τ) 0.5
EA Threshold (θEA) 45

Fitness Parameter (δ) 0.1
Deletion Threshold (θdel) 20

Rule parameters
Initial Tree Height 5
Max Tree Height 8

Operators [’and’, ’or’, ’not’]
Operator Rate 0.75
Import Rate .9

Specialization Height 1

• Error Threshold (ε0) - Threshold of maximal error tolerance; provides a toler-

ance of noise

• Learning Rate (β) - Controls the balance between new information and old

information; a large β results in a large change in the parameter estimate, while

a small β results in a small change

• Parent Tournament Proportion (τ) - Proportion of the current action set that is

used for tournament selection by the EA; this ensures relatively strong selection

pressure, adapting to the current action set size

• EA Threshold (θEA) - Frequency of the EA application

www.manaraa.com

50

• Fitness Parameter (δ) - Fraction of mean fitness of the population; if a rule has

a lower fitness, its deletion probability is increased

• Deletion Threshold (θdel) - Minimum experience threshold for fitness influence

in deletion

• Initial Tree Height - Maximum size of a rule’s condition during initialization

• Max Tree Height - Maximum of a rule’s condition during mutation and crossover

• Operators - The list of operators available for internal nodes of a rule’s condition

• Operator Rate - The probability of choosing an operator at any given node in

a tree

• Import Rate - The probability of choosing an import (versus a section) for a

given leaf node

• Specialization Height - The height of a subtree to add to rules created by C4.5

Initialization

www.manaraa.com

51

9. EXPERIMENTAL RESULTS

Various datasets were analyzed and compared using different techniques, ini-

tializations, and parameters. All experiments were run using a stratified ten-fold

cross-validation test. Each fold contained the same amount of malicious files (50%)

and non-malicious files (50%).

9.1. FAMILY OF MALWARE STUDY

In order to determine the effectiveness of the custom LCS system, a small dataset

was used in this experiment. The dataset consisted of malicious files all belonging

to a family of malware known as Poison Ivy. Three initialization methods were used

in this experiment: random initialization, covering initialization, and initialization

from C4.5 decision trees. The C4.5 algorithm itself was used as a baseline for perfor-

mance comparison. The four different results are compared and discussed for various

population sizes.

For random initialization, each rule was randomly generated using the grow

algorithm. For covering initialization, the population started empty, and rules were

created for each file that was presented and not covered by the current set of rules.

With C4.5 initialization, rules were taken from a generated C4.5 decision tree and

then modified using the specialization function.

Population size was adjusted to determine how it affects accuracy as well as

the minimal number of rules required to accurately classify the dataset. The dataset

consisted of 50 files, and was divided into 10 folds for stratified cross validation, each

fold has the same number of non-malicious files and malicious files so that each test

set has identical distributions of malware and goodware.

The results are presented in groups based on what parameter was changed be-

tween runs. For each population size, the three initialization methods are compared.

Figure 9.1 shows results from using a population size of 10. A population size of

10 was too small for this dataset as evident in the figures, no convergence was achieved.

The system had entered a covering-random deletion loop as described earlier. The

population size was too small to adequately cover the entire set of files, so as the

www.manaraa.com

52

(a) covering initialization (b) random initialization

(c) C4.5 initialization

Figure 9.1: Malware family results using population size=10

algorithm created rules to cover problem instances, it had to delete a rule already in

the population, and the deleted rule created a new gap that had to be covered on

the next round of file presentations. The large variance in both training and testing

accuracies show the system thrashing through new individuals, unable to keep high

performers in the population. The system can not cover the entire dataset, only a

window of it, and as that window continuously shifts around, the performance does

as well. The C4.5 initialization test started with a population of high fitness, but as

it made room for offspring, it deleted some high performing rules and performance

suffered as the system dropped into the same random cycle as the other methods.

www.manaraa.com

53

(a) covering initialization (b) random initialization

(c) C4.5 initialization

Figure 9.2: Malware family results using population size=20

Figure 9.2 shows results from using a population size of 20. This size population

does better than the previous experiment, as there is a lot less variance and an

increasing trend can be seen in the graphs. The performance is not quite optimal,

as there still is some variation in the performance. Although the problem space was

adequately covered, there were not enough individuals in the population to smooth

out the performance of the system on the harder to classify instances.

Figure 9.3 shows results from using a population size of 30. This experiment

had the best results, and could accurately represent the training set. The overall

best accuracy the system achieved was 99.6% training and 94.0% testing using rule

generation from the C4.5 decision tree with a population of 30. Closely following

www.manaraa.com

54

(a) covering initialization (b) random initialization

(c) C4.5 initialization

Figure 9.3: Malware family results using population size=30

was random initialization with 98.6% training and 92.0% testing. This experiment

had a relatively small search space and the LCS was able to evolve rules that were

competitive with those starting from C4.5.

Table 9.1 shows the averages and standard deviations from all runs in this exper-

iment. Two-sample F-tests for equal variances and corresponding two-tailed t-tests

using α = 0.05 were employed to compare results. Not all results were statistically

significant. The p values for some tests were small enough to reject the null hypothesis

that the data between two runs are independent random samples from normal distri-

butions with equal means and equal but unknown variances. Significant conclusions

from the testing results can be made as follows:

www.manaraa.com

55

• All methods improved by increasing the population size from 10 to 20.

• C4.5 initialization improved by increasing the population from 10 to 20.

• C4.5 initialization performed better than random initialization at population

size of 20.

• C4.5 initialization performed better than covering initialization for population

sizes of 10 and 20.

• At a population size of 10, no LCS method had a significant advantage over any

other.

• The C4.5 decision tree performed better than all other methods at a population

size of 10.

• The C4.5 decision tree performed better than covering and random initialization

at a population sizes of 20.

• The C4.5 decision tree did not perform significantly better than any LCS

method at a population size of 30.

• The overall best training method was C4.5 initialization with population size

of 20.

The C4.5 algorithm was ran on the dataset and achieved 98.0% training accuracy

and 96.0% testing accuracy, better than the LCS at small population sizes. At a large

enough population, the LCS performed comparably to C4.5. The best performing

initialization method was initializing with rules generated from the C4.5 decision tree;

showing that seeding the algorithm with prior knowledge about the data allowed it

to perform better than starting at random locations in the search space.

Better tuning of the LCS may enhance its performance as well as evolving it

for longer periods of time. While the decision tree was able to accurately classify

this small dataset, as shown in the benchmark it does not perform as well on more

www.manaraa.com

56

Table 9.1: Family of malware study experimental results

Dataset Initialization µ System Accuracy DR FAR

Training

Covering
10 0.727(0.141) 0.685(0.356) 0.242(0.263)
20 0.909(0.077) 0.814(0.197) 0.032(0.075)
30 0.964(0.064) 0.937(0.146) 0.017(0.053)

Random
10 0.805(0.127) 0.595(0.375) 0.056(0.097)
20 0.918(0.085) 0.899(0.138) 0.068(0.090)
30 0.986(0.031) 0.980(0.043) 0.009(0.029)

C4.5
10 0.855(0.123) 0.878(0.270) 0.174(0.169)
20 0.996(0.014) 0.991(0.029) 0.000(0.000)
30 0.986(0.031) 1.000(0.000) 0.022(0.051)

Decision Tree n/a 0.980(0.007) 0.955(0.024) 0.004(0.012)

Testing

Covering
10 0.640(0.126) 0.450(0.438) 0.233(0.316)
20 0.760(0.207) 0.600(0.516) 0.133(0.172)
30 0.920(0.140) 0.800(0.350) 0.000(0.000)

Random
10 0.780(0.175) 0.500(0.471) 0.033(0.105)
20 0.800(0.211) 0.700(0.422) 0.133(0.172)
30 0.920(0.140) 0.850(0.337) 0.033(0.105)

C4.5
10 0.800(0.163) 0.800(0.422) 0.200(0.233)
20 0.940(0.097) 0.900(0.211) 0.033(0.105)
30 0.940(0.097) 0.900(0.211) 0.033(0.105)

Decision Tree n/a 0.960(0.084) 0.900(0.211) 0.000(0.000)

diverse datasets. The next section analyzes how the two algorithms perform on a

larger dataset consisting of many types of malware.

9.2. BENCHMARK DATASET COMPARISON

The family of malware dataset is an unrealistic representation of an actual

malware detection system, which has to identify threats of all kinds, not just a single

type of malware. This experiment tested the algorithms on the larger, more diverse

dataset used for the benchmarking baseline set up in Section 4. The dataset size was

300 files and used a stratified ten-fold cross-validation test.

9.2.1. Initialization method study. For the first part of the experiment,

similar tests to those run in the family of malware study were run to analyze how the

algorithms performed on a larger and more difficult dataset. This includes adjusting

the population size as well as the initialization method. The resulting means and

standard deviations are shown in Table 9.2.

www.manaraa.com

57

Table 9.2: Initialization study experimental results

Dataset Initialization µ System Accuracy DR FAR

Training

Covering

50 0.837(0.048) 0.887(0.073) 0.214(0.047)
100 0.830(0.040) 0.866(0.093) 0.210(0.103)
200 0.907(0.022) 0.926(0.029) 0.112(0.031)
300 0.905(0.030) 0.940(0.023) 0.127(0.056)

Random

50 0.796(0.036) 0.865(0.093) 0.274(0.063)
100 0.841(0.040) 0.879(0.055) 0.197(0.060)
200 0.852(0.029) 0.921(0.044) 0.216(0.055)
300 0.889(0.028) 0.924(0.049) 0.148(0.037)

C4.5

50 0.897(0.020) 0.945(0.031) 0.151(0.049)
100 0.927(0.015) 0.971(0.031) 0.117(0.043)
200 0.962(0.013) 0.978(0.016) 0.056(0.026)
300 0.963(0.020) 0.987(0.015) 0.061(0.033)

Decision Tree n/a 0.948(0.008) 0.973(0.009) 0.077(0.015)

Testing

Covering

50 0.790(0.092) 0.840(0.155) 0.260(0.119)
100 0.803(0.053) 0.873(0.106) 0.267(0.144)
200 0.813(0.063) 0.833(0.072) 0.207(0.091)
300 0.783(0.071) 0.807(0.139) 0.240(0.078)

Random

50 0.743(0.108) 0.820(0.281) 0.333(0.220)
100 0.780(0.101) 0.807(0.219) 0.247(0.141)
200 0.813(0.061) 0.873(0.097) 0.247(0.118)
300 0.833(0.074) 0.873(0.119) 0.207(0.135)

C4.5

50 0.800(0.061) 0.840(0.134) 0.240(0.110)
100 0.803(0.051) 0.887(0.077) 0.280(0.125)
200 0.797(0.060) 0.847(0.063) 0.253(0.133)
300 0.790(0.072) 0.847(0.083) 0.267(0.141)

Decision Tree n/a 0.797(0.058) 0.847(0.083) 0.253(0.147)

Two-sample F-tests for equal variances and corresponding two-tailed t-tests us-

ing α = 0.05 were employed to compare results. Not all results were statistically

significant. The p values for some tests were small enough to reject the null hypoth-

esis. These following significant conclusions can be made from the training results:

• Covering initialization performed better than random initialization at popula-

tion sizes of 50 and 200.

• Covering initialization performed better at a population size of 200 over 100.

• Random initialization performed best on a population size of 300

www.manaraa.com

58

• C4.5 initialization performed better than random initialization on all popula-

tion sizes.

• C4.5 initialization performed better than covering initialization on all popula-

tion sizes except at 300.

• C4.5 initialization performed increasingly better on each population size in-

crease except for 300.

• The C4.5 decision tree did not perform significantly better than any tuned LCS

method.

Initialization from C4.5 obtained the best system performance and this is most

likely due to the fact that the system started with prior knowledge and had a coverage

of the problem space from the beginning.

9.2.2. Population size study. The data in Table 9.2 is grouped by

initialization method, but it can also be analyzed by population size. In the second

part of this experiment, a graph was generated for each initialization method and

plotted according to population size. The training accuracies of all three methods

using 4 different population sizes can be seen in Figure 9.4, and testing results in

Figure 9.5.

As the population size increased, there was a general trend of increased training

accuracy in each method. Testing accuracies did not exhibit the same trend. While

the random initialization method has a slight increase in accuracy, it is not statistically

significant. A larger population allowed the classifier system to create more rules,

which enabled the system to accurately classify more of the training set but not of

the testing set.

Increasing the population size will not necessarily make the system test perfor-

mance better, as well as having the disadvantages of making the system harder for a

human to interpret and slowing down the speed of the system, as more calculations

are required.

9.2.3. Offspring size study. The third part of the experiment analyzed how

adjusting the number of offspring produced affected the performance of the system.

The same benchmarking dataset is used as before.

www.manaraa.com

59

(a) C4.5 initialization (b) Random initialization

(c) Covering Initialization

Figure 9.4: Population size training results

In genetic programming one or two offspring can be created from the crossover

operation. The more common method is to produce a single offspring per evolution

cycle [40]. This test compared the differences between creating one and two offspring

per invocation of the evolutionary algorithm. As the reader will recall, the EA is

invoked based on the average time since it was last ran, so there is no set number

of children or EA applications for a given number of problem instances. Averages

and standard deviations are shown in Table 9.3. Changing offspring size did not

have a major affect on performance. Whether one individual or two were created,

evolutionary pressures still applied in the same manner.

www.manaraa.com

60

(a) C4.5 initialization (b) Random initialization

(c) Covering Initialization

Figure 9.5: Population size testing results

9.3. SYSTEM COMPARISON TO C4.5 DECISION TREE

The datasets in these experiments came from the Offensive Computing collec-

tion, which contains user-submitted malware. The malware in this set is of unknown

origin and could belong to any family, unlike the previous experiment. There is no

known relationship between any two malicious files. This is an accurate representa-

tion of the real world, where internet users are potentially exposed to every file on

the internet and may encounter any number of threats.

C4.5 was ran on the dataset using the orange machine learning framework [28].

The high-level structure of a decision tree is shown in Figure 9.6 and it is highly

www.manaraa.com

61

Table 9.3: Offspring size study experimental results

Dataset λ µ System Accuracy DR FAR

Training

1

50 0.837(0.048) 0.887(0.073) 0.214(0.047)
100 0.830(0.040) 0.866(0.093) 0.210(0.103)
200 0.907(0.022) 0.926(0.029) 0.112(0.031
300 0.909(0.030) 0.939(0.048) 0.119(0.057)

2

50 0.821(0.035) 0.891(0.054) 0.248(0.046)
100 0.848(0.020) 0.901(0.066) 0.204(0.057)
200 0.888(0.032) 0.949(0.029) 0.169(0.072)
300 0.918(0.023) 0.962(0.036) 0.126(0.048)

Testing

1

50 0.790(0.092) 0.840(0.155) 0.260(0.119)
100 0.803(0.053) 0.873(0.106) 0.267(0.144)
200 0.813(0.063) 0.833(0.072) 0.207(0.091)
300 0.820(0.083) 0.873(0.106) 0.233(0.151)

2

50 0.770(0.068) 0.827(0.167) 0.287(0.154)
100 0.813(0.095) 0.866(0.154) 0.240(0.181)
200 0.833(0.074) 0.907(0.064) 0.240(0.134)
300 0.810(0.063) 0.900(0.065) 0.280(0.150)

unbalanced. In this tree, almost all subtrees have a leaf node as one of their children.

Very few leaf nodes are at the same depth, and there is only a single path to the

maximum depth of the tree. This structure results from the sparseness of the dataset.

The dataset consists of many attributes but any given problem instance contains only

a few of those attributes; at each level the decision tree was able to separate a few

files from the remaining group. This resulted in a lopsided tree that has a large height

and a relatively small node count.

The number of possible nodes in a tree is exponentially related to its height:

2height + 1 − 1. The search space of a tree producing algorithm greatly increases with

tree height. The large search space of the learning classifier system is countered by

the fact the each problem instance in the LCS may be matched by more than one

rule, while in C4.5 each problem only matches a single leaf node. C4.5 uses a different

technique to define its nodes than the LCS does for defining its rules. The LCS is able

to adapt its action selection based on rule performance and delete poorly performing

rules.

www.manaraa.com

62

Figure 9.6: Visualization of an unbalanced C4.5 decision tree

A comparison of the C4.5 algorithm to the LCS is presented in Figure 9.7.

Training and testing accuracies are shown for each of the three initialization methods

as well as the original decision tree results. Each initialization method was tuned for

population size, and the figure represents the best testing accuracy obtained for each

method.

An important observation is that C4.5 outperformed the LCS on training accu-

racy, but the reverse was true for testing. This shows that the C4.5 algorithm was

able to create a more accurate representation of the training set, but could not gener-

alize as well on the testing set. In malware detection, known examples are useful for

benchmarking and training, but they are not a realistic representation of real world

data as they have already been classified. Detection of unknown threats is key to a

malware detection system, and the testing procedure simulates the system encoun-

tering previously unseen files. Although C4.5 may do better on training, it appears

to overfit compared to the LCS. Overfitting indicates that the system’s learning is

specific to the structure of the training set and generalization is not optimal.

www.manaraa.com

63

Figure 9.7: C4.5 and LCS comparison

An interesting observation is that as each testing results improved across each

method, training accuracy worsened. This is characteristic of overfitting, and is most

likely related to the specificity of the rules. C4.5 generates specific rules and trains to

a high rate, and the LCS based on those classifications has similar performance, but is

slightly more general. The LCS initialized by covering generates rules specifically for

training instances, but then generalizes them through mutation and recombination.

The initialization method that showed the greatest generalization was random, and

it follows from creating the least specific rules. The other methods use the training

instances for rule generation and these rules are not as general.

One of the learning classifier system’s advantages over C4.5 is its ability to

adapt and evolve the population of classifiers. The decision tree is static and cannot

adapt to new instances without being re-run over the entire dataset. Visualizing the

performance of the system over time, Figure 9.8 shows how the adaptive algorithm

starts with an initially poor performance and continuously improves in its ability to

classify. Results show that the training performance of the LCS never quite reaches

that of C4.5. This helps illustrate the importance of generalization: if an algorithm

www.manaraa.com

64

Figure 9.8: LCS evolution compared to C4.5

learns too specifically on the training set, it is said to be overfit, and performance on

the test set suffers. An ideal algorithm would be able to train to 100% accuracy and

have perfect generalization to any test set.

www.manaraa.com

65

10. CONCLUSION

This thesis presents an adaptive rule-based malware detection system employ-

ing a learning classifier system (LCS). It combines a rule-based expert system with

evolutionary algorithm (EA) based reinforcement learning, creating a self-training

adaptive malware detection system which dynamically evolves detection rules. The

LCS was extended from XCS to use s-expressions for the rule’s condition. Promising

results are shown, although their accuracy has to be further improved to be compet-

itive with the state-of-the-art. Evidence for the feasibility of using an LCS to evolve

malware detection rules is provided. With more features, additional aspects of PE

files could be analyzed, which may be expected to enhance detection rates and lower

false alarm rates.

The dataset included malware samples from Offensive Computing and non-

malicious samples from Windows computers. The set of known malicious and non-

malicious files were processed to confirm their maliciousness and features were ex-

tracted to be used for rule conditions.

A benchmark for comparing machine learning techniques is presented and the

decision tree algorithm C4.5 is used as a performance baseline. Under certain condi-

tions, the system was shown to outperform C4.5 on diverse datasets as well as being

better at generalization. Experimental results demonstrate the system’s ability to

evolve effective rules based on a training set, and its ability to generalize to previ-

ously unseen samples contained in a test set. The LCS did not suffer from the feature

dimension limitation of C4.5 mentioned in Section 4.5.

Various parameters were compared and the system trained best on multiple

datasets with a higher population size, but training performance was dependent on

the dataset as well as other problem specifics. No distinct overfitting curve was seen;

this is most likely due to a high amount of noise in the dataset. While training and

testing accuracies are linked, increasing training performance can negatively affect

testing if rules become too specialized.

www.manaraa.com

66

11. FUTURE WORK

Future work includes using a binary string representation, the more common

representation of a condition in an LCS. Bit strings are composed of zeros, ones, and

“don’t-care” symbols. The s-expressions used in this work allow for other kinds of

logical relationships to be expressed, using the logical operator OR. The typical bit-

string uses different forms of crossover and mutation, and this would have an affect

on evolution. Bit-strings are also trivial to check for subsumption between two rules.

If one condition logically subsumes another, it is possible to prevent offspring from

being added to the population that are subsumed by experienced individuals already

in the population. This operator could be added for s-expressions, but would require

significantly more computation time to compare two individuals.

Genetic programming utilizes different genetic operators than EAs employing

binary representations, and the subtle differences between the two should be studied.

Customizing the system to use fuzzy rules could help the system generalize better, and

creating a fuzzy LCS would allow for features to be defined abstractly. A comparison

between a Michigan style and a Pittsburgh style LCS would be useful to determine

how changing the unit the EA operates on, from a single rule to a ruleset, affects the

evolution and performance of the system.

Subtree comparison would reduce the processing time of the system. By evalu-

ating subtrees of individuals, results could be cached on the subtree level instead of

on the individual level, and fitness evaluation computation time would be decreased.

Subtree comparisons could also be used to reduce tree complexity by eliminating

redundant parts of each condition.

Extracting more features from PE files would allow for a better approximation

of the problem; it would create an environment more realistic of the real world but

would also expand the search space the algorithm is required to search. With more

genetic material available, the total number of possible conditions would increase and

this would have an effect on how the algorithm performs. An assumption made by

this research is that malicious files are identifiable by their extracted features, and

the more features available, the more reasonable this assumption becomes.

www.manaraa.com

67

The current system extracts static features from the files stored on disk, and is

a purely static analysis approach. By utilizing dynamic analysis, additional features

could be obtained from running the executables. Dynamic analysis could enhance

the abilities of the system, but would also require careful environmental setup, as

malicious code would be executing.

Additional comparisons to machine learning techniques would provide further

insight into how well evolutionary techniques perform versus alternatives. C5.0 has

multiple improvements over C4.5 (e.g., shorter run-time, smaller decision trees) and

is expected to have better performance than C4.5 [42]. Random forest is another

classification technique that builds classification (decision) trees, but this technique

is also known to be prone to overfitting [43]. Comparing these algorithms to the LCS

on the benchmark malware dataset would show the advantages and disadvantages of

different machine learning techniques.

www.manaraa.com

68

BIBLIOGRAPHY

[1] Jonathan J. Blount, Daniel R. Tauritz, and Samuel A. Mulder. Adaptive Rule-

Based Malware Detection Employing Learning Classifier Systems: A Proof of

Concept. In Proceedings of COMPSAC 2011 - the 35th IEEE Computers, Soft-

ware, and Applications Conference, 2011.

[2] Annual Report PandaLabs 2010. Technical report, Panda Security, 2010.

[3] The Business of Cybercrime - A Complex Business Model. Technical report,

Trend Micro Inc., 2010.

[4] Internet Security Threat Report, Vol. 16. Technical report, Symantec Corp.,

2011.

[5] Weidong Cui. Automating Malware Detection by Inferring Intent. PhD thesis,

University of California at Berkeley, Berkeley, CA, USA, 2006.

[6] Robert Moir. Defining Malware: FAQ. http://technet.microsoft.com/

en-us/library/dd632948.aspx, 2003. [Online; accessed 8-8-2011].

[7] Symantec Report on Rogue Security Software. Technical report, Symantec Corp.,

2009.

[8] N. Idika and A.P. Mathur. A Survey of Malware Detection Techniques. Purdue

University, 2007.

[9] M.Z. Shafiq, S.M. Tabish, and M. Farooq. PE-Probe: Leveraging Packer Detec-

tion and Structural Information to Detect Malicious Portable Executables. In

Virus Bulletin Conference (VB), Switzerland, 2009.

[10] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly Detection: A

Survey. ACM Computing Surveys, 41:15:1–15:58, July 2009.

[11] M.D. Ernst. Static and dynamic analysis: synergy and duality. In WODA 2003:

ICSE Workshop on Dynamic Analysis, pages 24–27, 2003.

www.manaraa.com

69

[12] Jesse C. Rabek, Roger I. Khazan, Scott M. Lewandowski, and Robert K. Cun-

ningham. Detection of Injected, Dynamically Generated, and Obfuscated Mali-

cious Code. In Proceedings of WORM 2003 - ACM Workshop on Rapid Malcode,

pages 76–82, New York, NY, USA, 2003. ACM.

[13] Keehyung Kim and Byung-Ro Moon. Malware Detection based on Dependency

Graph using Hybrid Genetic Algorithm. In Proceedings of GECCO 2010 - the

Genetic and Evolutionary Computation Conference, pages 1211–1218, New York,

NY, USA, 2010. ACM.

[14] M.Z. Shafiq, S.M. Tabish, and M. Farooq. On the Appropriateness of Evolution-

ary Rule Learning Algorithms for Malware Detection. In Proceedings of GECCO

2009 - the Genetic and Evolutionary Computation Conference: Late Breaking

Papers, pages 2609–2616. ACM, 2009.

[15] Monu Bambroo. Intrusion Detection using Fuzzy Logic and Evolutionary Algo-

rithm Techniques. Master’s thesis, Missouri University of Science and Technol-

ogy, Rolla, MO, USA, 2005.

[16] Gregory Anthony Harrison and Eric W. Worden. Genetically Programmed

Learning Classifier System Description and Results. In Proceedings of GECCO

2007 - the Genetic and Evolutionary Computation Conference, pages 2729–2736,

New York, NY, USA, 2007. ACM.

[17] Offensive Computing. Community Malicious code research and analysis. http:

//www.offensivecomputing.net/. [Online; accessed 8-8-2011].

[18] Johannes Plachy. The Portable Executable File Format. http://www.csn.

ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile.html. [On-

line; accessed 8-8-2011].

[19] VirusTotal - Free Online Virus, Malware and URL Scanner. http://www.

virustotal.com. [Online; accessed 8-8-2011].

[20] Ero Carrera. pefile - a Python module to read and work with PE (Portable

Executable) files. http://www.code.google.com/p/pefile/. [Online; accessed

8-8-2011].

www.manaraa.com

70

[21] Craig S. Wright. Packer Analysis Report Debugging and unpacking the NsPack

3.4 and 3.7 packer. Technical report, SANS Institute, August 2010.

[22] T. Brosch and M. Morgenstern. Runtime Packers: The Hidden Problem. Black

Hat USA, 2006.

[23] C. Shannon and W. Weaver. The Mathematical Theory of Communication. U.

Illinois Press, Urbana, Illinois, 1949.

[24] R. Lyda and J. Hamrock. Using Entropy Analysis to Find Encrypted and Packed

Malware. Security & Privacy, IEEE, 5(2):40–45, 2007.

[25] R. Urbanowicz, N. Sinnott-Armstrong, and J. Moore. Random Artificial Incor-

poration of Noise in a Learning Classifier System Environment. In Proceedings

of GECCO 2011 - the Genetic and Evolutionary Computation Conference, pages

369–374. ACM, 2011.

[26] J.R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, 1993.

[27] K.A. De Jong and W.M. Spears. Learning Concept Classification Rules using

Genetic Algorithms. In Proceedings of the Twelfth International Joint Conference

on Artificial Intelligence, pages 651–656, 1991.

[28] Orange - Open-source data mining and machine learning suite. http://orange.

biolab.si/. [Online; accessed 8-8-2011].

[29] J. H. Holland. Adaptation. In R. Rosen and F.M. Snell, editors, Progress in

Theoretical Biology IV, pages 263–293. Plenum Press, New York, 1976.

[30] J.H. Holland. Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligenc. The

MIT Press, 1975.

[31] Larry Bull. Learning Classifier Systems: A Brief Introduction. In Applications

of Learning Classifier Systems, pages 3–14. Springer, 2004.

[32] Ryan J. Urbanowicz and Jason H. Moore. Learning Classifier Systems: A Com-

plete Introduction, Review, and Roadmap. Journal of Artificial Evolution and

Applications, 2009:1:1–1:25, 2009.

www.manaraa.com

71

[33] M.V. Butz. Rule-based evolutionary online learning systems: A principled ap-

proach to LCS analysis and design. Springer Verlag, 2006.

[34] Stephen Frederick Smith. A Learning System Based on Genetic Adaptive Algo-

rithms. PhD thesis, University of Pittsburgh, Pittsburgh, PA, USA, 1980.

[35] Tim Kovacs. Towards a Theory of Strong Overgeneral Classifiers. In Foundations

of Genetic Algorithms, pages 165–184. Morgan Kaufmann, 2000.

[36] S.W. Wilson. ZCS: A zeroth level classifier system. Evolutionary computation,

2(1):1–18, 1994.

[37] L. Bull and T. Kovacs. Foundations of Learning Classifier Systems: An Intro-

duction. Foundations of Learning Classifier Systems, pages 1–17, 2005.

[38] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer

Verlag, 2003.

[39] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,

Cambridge, 1989.

[40] R. Poli, W.B. Langdon, and N.F. McPhee. A Field Guide to Genetic Program-

ming. Lulu Enterprises UK Ltd, 2008.

[41] M.V. Butz, T. Kovacs, P.L. Lanzi, and S.W. Wilson. How XCS Evolves Accu-

rate Classifiers. In Proceedings of GECCO 2001 - the Genetic and Evolutionary

Computation Conference, pages 927–934, 2001.

[42] R. Quinlan. Data Mining Tools See5 and C5.0. 2004.

[43] Leo Breiman. Random Forests. Machine learning, 45(1):5–32, 2001.

www.manaraa.com

72

VITA

Jonathan Joseph Blount was born on September 24, 1987 in Tampa, Florida.

After graduating from Park Hill South High School in May of 2005, Jonathan started

his undergraduate career at Missouri University of Science and Technology.

After graduating with a Bachelor of Science in computer science and a Bachelor

of Science in computer engineering in May 2009, he enrolled as a computer science

Master’s student at Missouri S&T. During Fall 2009, Jonathan enrolled in a coopera-

tive education program with Sandia National Laboratories. At the end of the co-op,

Jonathan was accepted into Sandia’s Critical Skills Master’s Program. In Spring

2010, Jonathan joined the Trustworthy Systems Laboratory directed by Dr. Miller.

In Fall 2010, Jonathan joined the Natural Computation Laboratory directed by Dr.

Tauritz. Jonathan completed his degree requirements for his Master of Science de-

gree in Computer Science in August 2011 and will continue his employment at Sandia

National Laboratories.

	Adaptive rule-based malware detection employing learning classifier systems
	Recommended Citation

	tmp.1412000191.pdf.skdZn

